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Abstract
The transition from unitary, reversible von Neumann-Everett quantum processes to 
non-unitary, irreversible processes and measurements is explored through infinite 
tensor products interpreted as nested, chained, or iterated Wigner’s friend scenarios. 
Infinite tensor products can disrupt unitary equivalence through sectorization and 
factorization, drawing parallels to concepts from real analysis, recursive mathemat-
ics, and statistical physics.

Keywords  Quantum measurement · Quantum decoherence · Infinite tensor 
products · Nested Wigner’s friend · Quantum decoherence · Von Neumann 
algebras · Irreversibility · Quantum entanglement

1  Introduction

Unitary equivalence can be surpassed through infinite means. This observation is 
consistent with findings in number theory and analysis, where finite operations on 
rational numbers cannot yield results beyond the rational domain. However, when 
infinite methods and techniques are employed—such as Cantor’s diagonalization [1, 
2] or the construction of Specker sequences  [3–5], exemplified by Chaitin’s halt-
ing probability [6, 7]—it becomes possible to conceptualize irrational, incomputable, 
and random (algorithmically incompressible) numbers.

The central problem this paper addresses is the quantum measurement problem: 
how can the non-unitary, irreversible measurement process (von Neumann’s “pro-
cess 1”) emerge from the purely unitary and reversible evolution described by the 
Schrödinger equation (“process 2”)? Mainstream approaches to this problem include 
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decoherence-based accounts, which explain the apparent collapse as a result of entan-
glement with the environment; objective collapse theories, which modify quantum 
dynamics to include a physical collapse mechanism; and Everettian or Many-Worlds 
interpretations, which posit that all outcomes occur in different branches of a uni-
versal wavefunction. This paper explores an alternative perspective, investigating 
the hypothesis that the transition to irreversibility is an emergent phenomenon that 
arises in the mathematical limit of infinitely complex systems. This limit is modeled 
using infinite tensor products, with the nested Wigner’s Friend scenario serving as a 
conceptual framework for such an infinite regression. The advantage of this formal-
ism is its ability to mathematically break unitary equivalence without altering the 
fundamental quantum postulates for finite systems.

The unitary group, which formalizes quantum state evolution (excluding irrevers-
ible measurements and processes such as tracings), is, like all groups, inherently 
‘hermetic’ by definition. In particular, its closedness under unitary transformations 
reflects a fundamental property of group theory, connected to mere permutations or 
one-to-one transformations of the identity element. Consequently, it seems that irre-
versibility cannot emerge from purely unitary evolution. To explore this further, let 
us revisit the historical arguments that gave rise to the conundrum posed by von 
Neumann and others.

In the von Neumann scheme for ideal quantum measurement [8, 9], the ‘object’ 
is prepared in an initial state |ψ⟩. With respect to a ‘mismatching’ context (relative 
to that preparation)—or, equivalently, orthonormal basis or maximal operator  [10, 
Satz 8] ([11, Theorem 1, § 84])—|ψ⟩ is in a coherent superposition (linear combina-
tion) |ψ⟩ =

∑n
i=1 ai|ψi⟩ of (basis) elements |ψi⟩ of that context.

The ‘measurement ancilla’—along with synonymous terms such as ‘provision’, 
‘component’, or ‘arrangement’—should be represented by another state, denoted as 
|φ⟩. This state, in relation to a suitable basis |φ1⟩, . . . , |φn⟩, can also be expressed as 
a coherent superposition: |φ⟩ =

∑n
j=1 bj |φj⟩. When an interaction occurs between 

the ‘object’ and the ‘measurement ancilla’, the combined state |Ψ⟩

	
|Ψ⟩ =

n∑
i,j=1

cij |ψi⟩ ⊗ |φj⟩ =
n∑

i,j=1
cij |ψiφj⟩� (1)

becomes a non-factorizable tensor product, meaning that the coefficients cij  cannot 
be written as products aibj .

From now on, when referring to the ‘object’ and the ‘measurement ancilla’, apos-
trophes will be omitted. Since in entangled systems individuality is traded for rela-
tionality between individual components [12], any conceptualization of a Heisenberg 
cut between these entangled constituents is a classical notion that may be maintained 
for all practical purposes (FAPP [13]) but, strictly speaking, is not applicable.
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2  Infinite Tensor Products

By recursively applying the von Neumann scheme for ideal quantum measure-
ment  (1), we can construct increasingly larger product spaces as more factors are 
added. To form a Hilbert space, we take the closure of this space under a suitable 
norm derived from the inner product. This process can be understood as taking the 
‘double dual’, or more specifically, the dual of the vector space of all bilinear forms 
on the vector spaces participating in the product [11].

2.1  Elementary Tensors as Products of Basis Vectors

Given a countable collection of Hilbert spaces 
{

Hn

∣∣∣ 1 ≤ kn ≤ dn ∈ N
}

, let 
{

|kn⟩
∣∣∣ 1 ≤ kn ≤ dn ∈ N

}
 be an orthonormal basis for each Hn, where the dimen-

sion dn of Hn could be a finite positive integer or countably infinite.

An elementary tensor product 
⊗∞

n=1 |kn⟩ is then given by

	

∞⊗
n=1

|kn⟩ = |k1⟩ ⊗ |k2⟩ ⊗ |k3⟩ ⊗ · · · = |k1k2k3 · · · ⟩

where |kn⟩ is the knth basis vector from Hn.

2.2  Tensor Product Space

Let I be a countable (enumerable) infinite index set, identified with the set of all natu-
ral numbers, N. The labelling n represents the nth subfactor of the tensor product. For 
the sake of simplicity, from now on, we will consider the set of all natural numbers 
as our index set. So, whenever we write, say, 

⊗∞
n=1 |kn⟩ we really mean 

⊗
n∈I |n⟩.

To form the tensor product space 
⊗∞

n=1 Hn(i)	 we start with elementary ten-
sors 

⊗∞
n=1 |kn⟩, where n labels the nth subfactor of the tensor product, and kn 

represents the knth basis vector in Hn.
(ii)	 We define the inner product on elementary tensors by the product of the indi-

vidual inner products [14, Definition II.5., p. 63]: 

	

〈 ∞⊗
n=1

|kn⟩

∣∣∣∣∣
∞⊗

n=1
|jn⟩

〉
=

{ ∏∞
n=1⟨kn|jn⟩Hn

converging,
0 otherwise.

	  Nonvanishing inner products will later, in Subsection 2.4, serve as a criterion for 
vectors to belong to the same sector.

(iii)	We then consider finite linear combinations of these elementary tensors: 
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∑
i

ci

( ∞⊗
n=1

|k(i)
n ⟩

)
,

	  where ci are complex coefficients and |k(i)
n ⟩ are basis vectors in the elementary 

tensor product labeled by a countable (enumerable) index i (see discussion later).

(iv)	We finally obtain the Hilbert space 
⊗∞

n=1 Hn by taking the completion of the 
space of finite linear combinations of elementary tensors with respect to the norm 
induced by the inner product, ensuring that the space is complete and satisfies the 
properties of a Hilbert space.

By defining elementary tensors as products of basis vectors from the bases of the fac-
tors, a concrete and manageable set of elementary tensors is obtained, spanning the 
tensor product space. This approach, derived from finite tensor products [11, Theo-
rem 1, § 24,25], simplifies both the definition and the computation of the inner prod-
uct, ensuring that the space 

⊗∞
n=1 Hn has a well-defined Hilbert space structure.

However, this construction does not directly address the uncountable infinity of 
elementary products. To illustrate this, we can draw an analogy with the represen-
tation of real numbers as expansions in an n-ary system, where they are encoded 
using a (finite) set of basis elements. Just as Cantor’s diagonal argument shows that 
the reals cannot be enumerated by any countable set of indices, so too can we not 
enumerate the uncountable infinity of elementary products in the infinite tensor prod-
uct. In von Neumann’s own words “generalisations of the direct product lead to 
higher set-theoretical powers (G. Cantor’s “Alephs”)” [15, S 4, p. 4]. Following Von 
Neumann’s ‘incomplete infinite direct products’ [15, Chapter 4], Thirring and Wehrl 
define the infinite tensor product in terms of equivalence classes [16, § 2] (see also 
Thirring [14, Definition II.4., p. 63]) discussed later in the context of sectorization. 
One could even go so far as to suspect that many of the upcoming issues related to 
continuity originate from this fact.

2.3  Violation of Unitary Equivalence

In finite dimensions, unitarity is a property of a single operator, characterized by its 
ability to preserve the inner product and possessing an inverse equal to its conjugate 
transpose. On the other hand, unitary equivalence is a relation between two operators 
or orthonormal bases, signifying that one can be transformed into the other via a uni-
tary transformation. Fundamentally, unitarity captures the properties of an individual 
operator, whereas unitary equivalence captures the relationship between two opera-
tors or orthonormal bases.

Infinite tensor products pose significant challenges to maintaining unitary equiva-
lence, primarily due to difficulties in defining a consistent inner product, achieving 
proper normalization, preserving the required topological structure of the Hilbert 
space, and managing unbounded operators. These challenges make it problematic 
to uphold the fundamental principles of quantum mechanics, including the ability 
to execute arbitrary unitary transformations within the Hilbert space. Notably, cer-
tain dynamical processes, such as the interaction between sectors (as explored in the 
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infinite limit in subsection 2.4), become severely restricted when confined to finite 
resources.

2.3.1  Inner Product and Orthogonality

The inner product is a crucial concept in quantum mechanics, ensuring that probabil-
ity amplitudes are well-defined and that the evolution is unitary. However, in an infi-
nite tensor product space, defining an inner product that adheres to the properties of 
a Hilbert space poses significant challenges. Key among these challenges are issues 
with convergence, which are closely tied to the orthogonality of states.

As long as the tensor product is finite, the inner product is well-behaved. When we 
extend to an infinite tensor product, say |Ψ⟩ =

⊗∞
i=1 |ψi⟩ and |Φ⟩ =

⊗∞
i=1 |ϕi⟩, the 

inner product would apparently be ⟨Ψ|Φ⟩ =
∏∞

i=1⟨ψi|ϕi⟩.
The central issue is whether this infinite product converges to a non-zero value or 

not. Suppose, for the sake of demonstration, that each ⟨ψi|ϕi⟩ is very slightly less 
than 1. As a consequence, the infinite product can converge to zero, and thus those 
vectors which are only ‘slightly apart’ appear orthogonal. Formally, suppose that 
⟨ψi|ϕi⟩ = 1 − εi = δi, or εi = 1 − ⟨ψi|ϕi⟩, where 0 < εi ≪ 1. For a large number 
of factors, the infinite product behaves approximately as

	
⟨Ψ|Φ⟩ =

∞∏
i=1

(1 − εi) ≈ exp

(
−

∞∑
i=1

εi

)
.� (2)

If the series 
∑∞

i=1 εi diverges (even if slowly), this product will converge to zero, that 
is, 

∏∞
i=1(1 − εi) → 0.

Furthermore, the inner product would also become zero for states |Ψ⟩ and |Φ⟩ that 
differ in only a single or a finite number of the infinitely many subfactor components, 
where ⟨ψi|ϕi⟩ = 0, with all the rest being identical. Additionally, there may be issues 
related to the phases, as explored by von Neumann [15] and by Van Den Bossche and 
Grangier [17].

This highlights the challenges infinite tensor products face in preserving a consis-
tent inner product structure. In numerous instances, the inner product may become 
undefined or yield counterintuitive outcomes, contravening the anticipated properties 
of a Hilbert space and subsequently impacting unitary equivalence.

2.3.2  Norm

Issues with inner products in turn translate into problems with normalization, as the 
polarization identity expresses the inner product of two vectors in terms of the norm of 
their differences; that is, ⟨Ψ|Φ⟩ = 1

4
[
∥Ψ + Φ∥2 − ∥Ψ − Φ∥2 + i

(
∥Ψ − iΦ∥2 − ∥Ψ  

+iΦ∥2)]
. Thus, for ⟨Ψ|Φ⟩ = 0,∥Ψ + Φ∥2 = ∥Ψ − Φ∥2, and 

∥Ψ − iΦ∥2 − ∥Ψ + iΦ∥2. This is true for finite tensor products but not necessar-
ily for infinite ones if, as before, vectors |Ψ⟩ and |Φ⟩ represent physically distinct 
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states located ‘close to each other’, such that the subfactors ⟨ψi|ϕi⟩ = 1 − εi where 
0 < εi ≪ 1.

As before this applies also to states |Ψ⟩ and |Φ⟩ differing in only a single one or a 
finite number of infinitely many subfactor components where ⟨ψi|ϕi⟩ = 0, with all 
others remaining identical.

2.3.3  Bounded Operators

Let us consider an example involving an infinite tensor product of projection opera-
tors to illustrate issues with bounded operators on infinite tensor products.

Consider the Hilbert space H = C2 (2-dimensional complex space). Let E be the 
rank-one projection operator onto the subspace spanned by the vector | ↑⟩ = (1, 0)⊺, 
with E = diag (1, 0). Now, consider the operator F =

⊗∞
n=1 E, which is the infinite 

tensor product of E with itself.
Initially, it may seem that E being a projection operator with ∥E∥ = 1, F  would 

be a well-defined bounded operator with ∥F∥ = 1. However, this is not the case. To 
understand why, let us examine the action of F  on specific vectors.

Let us represent a general vector in the infinite tensor product space as 
|ψ⟩ =

⊗∞
n=1 |ψn⟩, where |ψn⟩ are vectors in Hn. For simplicity, assume each |ψn⟩ 

is a normalized vector in C2.
When F  is applied to |ψ⟩, we get F |ψ⟩ =

⊗∞
n=1 E|ψn⟩.

Since E projects onto (1, 0)⊺, the resulting vector will be non-zero only if each 
|ψn⟩ has a component along (1, 0)⊺. In an infinite product, the probability of each 
|ψn⟩ having a non-zero component along (1, 0)⊺ diminishes rapidly, effectively lead-
ing to the result that F |ψ⟩ = 0 for almost all |ψ⟩.

For instance, consider the vector 
|ψ⟩ = | ↑⟩ ⊗ | ↑⟩ ⊗ · · · , where F |ψ⟩ = |ψ⟩ and ∥F |ψ⟩∥ = ∥|ψ⟩∥ = 1. On the other 
hand, for any vector containing a component orthogonal to | ↑⟩ = (1, 0)⊺, such as 
the spin-down state | ↓⟩ = (0, 1)⊺, in at least one factor, F  maps it to the zero vec-
tor. For example, for the vector |φ⟩ = | ↑⟩ ⊗ | ↑⟩ ⊗ · · · ⊗ | ↓⟩ ⊗ | ↑⟩ ⊗ · · · , we have 
F |φ⟩ = 0.

This demonstrates that the infinite tensor product F =
⊗∞

n=1 E does not behave 
as a well-defined bounded operator in the infinite tensor product space. Although 
F  leaves certain vectors unchanged—those entirely within the span of (1, 0)⊺—it 
maps any vector with even a single orthogonal component to zero. This behavior 
leads to some counterintuitive physical properties because F  is extremely sensitive to 
changes in its input: changing even one factor from (1, 0)⊺ to any other vector results 
in mapping the vector to zero.

Furthermore, the behavior of F  is consistent with finite tensor products of E. In 
both finite and infinite cases, the result is a rank-one projection. However, the key 
difference is that in the infinite case, this leads to a projection onto a one-dimensional 
subspace of an infinite-dimensional space, which has some unique properties.
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2.4  Sectorization

Von Neumann’s concept of ‘incomplete infinite direct products’  [15, Chapter  4], 
as reflected in the notion of superselection sectors in algebraic quantum field the-
ory  [18–22], provides a solution to the problem that a single (or finitely many) 
subfactor(s) could nullify the inner product by ‘grouping’ vectors that differ from 
each other in only finitely many subfactors, or are otherwise ‘close to’ each other. 
These groupings are mutually orthogonal and can be demonstrated to be equivalence 
classes referred to as sectors. This implies that vectors from different sectors differ 
in an infinite number of subfactors and are orthogonal in the sense that their scalar 
product is zero. In von Neumann’s own words, “What happens could be described in 
the quantum-mechanical terminology as a ‘splitting up’ of [[the full tensor product]] 
into ‘non-intercombining systems of states’, corresponding to the ‘incomplete’ direct 
products” [15, § 6, p. 4]

Formally, within each sector are only those infinite tensor products that are located 
‘close to’ each other, such that their deviations from each other are ‘small’. Two vec-
tors |Ψ⟩ and |Φ⟩ are in the same sector if they are equivalent, denoted by |Ψ⟩ ∼ |Φ⟩, 
when all but finitely many subfactors are either equal or unitary equivalent and to or 
‘close to’ one another (only a unitary transformation apart); that is, with the notation 
from (2) we require [17, Eq. (9)]

	

∞∑
i=1

(1 − ⟨ψi|ϕi⟩) =
∞∑

i=1
εi ≤

∞∑
i=1

|1 − ⟨ψi|ϕi⟩| < ∞.� (3)

(With 0 < εi ≪ 1 as above this would be an equality.) This condition ensures that the 
product 

∏∞
i=1⟨ψi|ϕi⟩ converges to a non-zero value within the same sector. The inner 

product of infinite tensor products belonging to different sectors vanishes.
For finite tensor products resulting in finite-dimensional Hilbert spaces, sectoriza-

tion has no meaningful relevance: Since, in finite dimensions, all orthonormal bases 
are unitarily equivalent.

Therefore, for infinite tensor products, instead of directly dealing with the entire 
infinite tensor product space, one should consider regions or sectors within it. These 
sectors are equivalence classes of vectors that differ only by a finite number of com-
ponents in the tensor product, or are otherwise close to (unitary equivalent) each 
other. In this framework, it is postulated that these mathematically distinct sectors 
correspond physically to different ‘global’ or ‘macroscopic’ configurations of the sys-
tem, such as pointer states of a measurement apparatus [23].

States in different sectors cannot be coherently superposed by finite (unitary) 
means. One may say that, with respect to these finite unitary means, ‘coherence 
is lost’. Hepp even went so far as to state that “leads to macroscopically different 
‘pointer positions’ and to a rigorous ’reduction of the wave packet’ ”  [23]. Let us 
demonstrate this with an example. Consider an infinite array of spin- 1

2  particles, 
where each particle has a Hilbert space H = C2, spanned by the states | ↑⟩ (spin 
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up) and | ↓⟩ (spin down). The entire system is then described by the infinite tensor 
product of these spaces Htotal =

⊗∞
i=1 C2

i .
In such a setup, a sector can be defined by specifying the ‘macroscopic’ behavior 

of the system, such as the average magnetization:

	● Sector A (All Spins Up): Consider the state where every spin is up; that is, 
|ψup⟩ = | ↑⟩ ⊗ | ↑⟩ ⊗ | ↑⟩ ⊗ · · · . This state belongs to a sector where all spins 
are aligned up.

	● Sector B (All Spins Down): Similarly, consider the state 
|ψdown⟩ = | ↓⟩ ⊗ | ↓⟩ ⊗ | ↓⟩ ⊗ · · ·  where every spin is down. This state belongs 
to a different sector where all spins are aligned down.

	● Sector C (Mixed Alignment): Now consider a state where half the spins are up 
and half are down, such as |ψmixed⟩ = | ↑⟩ ⊗ | ↓⟩ ⊗ | ↑⟩ ⊗ | ↓⟩ ⊗ · · · . This state 
belongs to yet another sector, where the system exhibits a different macroscopic 
behavior.

To illustrate the challenges encountered, let us attempt to superpose states from dif-
ferent sectors.

	● Within the Same Sector: Superpositions of states within the same sec-
tor are possible. For example, superpositions of states that dif-
fer by a finite number of spins can be physically meaningful, such as 
|ψ⟩ = α| ↑⟩ ⊗ | ↑⟩ ⊗ | ↑⟩ ⊗ · · · + β| ↑⟩ ⊗ | ↓⟩ ⊗ | ↑⟩ ⊗ · · ·  Both states essen-
tially belong to the same ‘all spins up’ sector with minor fluctuations.

	● Across Different Sectors: Attempting to superpose states from different sectors, 
such as: |ϕ⟩ = α|ψup⟩ + β|ψdown⟩, results in a superposition that is not physi-
cally meaningful. States from different sectors (like all spins up versus all spins 
down) represent distinct macroscopic configurations, and there is no way to co-
herently combine them in an infinite system using finite means.

Let us now address the question of why coherence—the ability to linearly superpose 
states from different sectors—is lost in an infinite tensor product space. It is essential 
to note that different sectors are orthogonal: States from different sectors (like all 
up versus all down) become orthogonal in the limit of an infinite number of par-
ticles. This orthogonality is a reflection of the fact that they represent fundamentally 
distinct physical configurations. Furthermore, there exists no observable capable of 
coherently mixing states from different sectors, implying that any attempt to super-
pose them would not result in interference effects. In the limit case of infinite tensor 
product states, the system effectively ‘forgets’ any phase relationship between these 
states, leading to a loss of coherence.

In the infinite tensor product of spin- 1
2  systems, sectors correspond to different 

macroscopic configurations of spins—for instance, all up, all down, and mixed. States 
from different sectors cannot be coherently superposed because they are orthogonal 
and no (finite) transformation connects them—they tend to ‘crystallize’ or ‘decohere’ 
into different macroscopic domains or realms—leading to a loss of coherence. This 
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example illustrates how sectors naturally arise in infinite tensor products and why 
superpositions across sectors are not physically meaningful. With this kind of sec-
torization, or transition into different sectors, global unitarity with respect to finite 
unitary means is lost.

2.5  Factorization

Von Neumann algebras, also known as W ∗-algebras, are operator algebras that are 
classified into types I, II, and III, introduced by von Neumann and Murray [24]. These 
algebras are closed under addition, operator and scalar multiplication, and contain the 
identity. The ‘star’ symbol ∗ indicates closure under adjoint transformations. They 
are also closed in the weak operator topology with respect to operator sequences con-
verging towards a limit, ensuring that they are complete under this topology.

A von Neumann algebra M  is called a factor if its center Z (M )—the set of 
all operators in M  that commute with every operator in M —consists only of sca-
lar multiples of the identity operator. Factors are indecomposable in the sense that 
they cannot be decomposed into a direct sum of two non-trivial von Neumann alge-
bras. Furthermore, any von Neumann algebra can be written as a direct sum of its 
factors [25].

Von Neumann factors are classified into three types: I, II, and III. This classifica-
tion is based on the structure of projections in the algebra and the trace properties.

Type I factors are those that are isomorphic to all bounded operators on a Hilbert 
space:

	● Type In: The factor is isomorphic to Mn(C), the algebra of n × n matrices over 
the complex numbers. These factors correspond to finite-dimensional Hilbert 
spaces.

	● Type I∞: The factor is isomorphic to B(H ), the algebra of all bounded opera-
tors on an infinite-dimensional separable Hilbert space H . These factors act on 
Hilbert spaces with countably infinite dimension.

It is reasonable to identify (orthogonal) projections of type In factors with elements 
of orthonormal bases, or equivalently, with contexts, blocks in quantum logic, or 
maximal operators. This identification is supported by  [10, Satz  8] (see also  [11, 
§ 82]). Type In factors are the only ones in finite dimensional Hilbert space. They 
have minimal orthogonal projections (self-adjoint and idempotent) that correspond 
to one-dimensional subspaces of the Hilbert space, as well as convex combinations 
thereof (projecting into higher-dimensional subspaces). Indeed, any sequence of 
mutually orthogonal (orthogonal) projections |ψi⟩, combined with any sequence of 
probabilities pi ∈ [0, 1] satisfying 

∑k
i=1 pi = 1 where k ≤ n, forms a density opera-

tor ρ =
∑k

i=1 pi|ψi⟩⟨ψi|.
In terms of quantum mechanical states, this amounts to both pure and mixed 

states [26]. Note that, in the context of a finite-dimensional Hilbert space, the trace 
of a k-dimensional projection in an n-dimensional space (where k ≤ n) is simply the 
positive integer k.
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In terms of entanglement, type In factors can (but need not) represent a finite num-
ber of entangled particles. Type I∞ factors are infinite-dimensional.

Type II factors are characterized by their occurrence in infinite-dimensional Hil-
bert spaces. In contrast to type I factors, they are considered ‘diffuse’, meaning they 
lack minimal projections, which are projections onto one-dimensional subspaces or 
convex combinations thereof [27]. This property is often linked to mixed states in the 
context of quantum mechanical states [26].

	● Hyperfinite type II1 factor: In contrast to type I factors, the entanglement in a 
hyperfinite type II1 factor is more ‘diffuse’, making it impossible to identify indi-
vidual entangled states. For example, the factor might comprise an infinite num-
ber of qubit pairs, with all but a finite number of pairs in a maximally entangled 
state [25].

	● Type II∞ factor: This factor is simply the tensor product of a type II1 factor and 
a type I∞ factor.

Despite being diffuse, the trace of a projection in a type II factor is still faithful, nor-
mal, and semi-finite. A faithful trace is one that does not vanish on any non-zero posi-
tive element of the von Neumann algebra. A normal trace respects the convergence of 
operators (in the weak topology), ensuring that the trace of a limit of operators equals 
the limit of their traces. A semi-finite trace is one such that for any positive element, 
there is a non-zero ‘sub-element’ on which the trace is finite. For type II1 factors, the 
trace assigns a value in the continuous interval [0, 1], where 0 corresponds to the zero 
projection and 1 corresponds to the identity projection. This trace function behaves 
like a measure of ‘dimension’ but is not tied to integer dimensions as in finite-dimen-
sional spaces. For type II∞ factors, the trace can take values in [0, ∞].

Type III factors are characterized by the absence of faithful normal semi-finite 
traces. In the context of quantum mechanical states, this implies that states on Type 
III factors cannot be represented by density operators in the conventional sense. 
The distinction between pure and mixed states becomes more intricate, as all nor-
mal states on a Type III factor are, in some sense, ‘mixed.’ Nevertheless, notions 
of pure states (as extreme points of the state space) and mixed states still exist, but 
they exhibit different behaviors compared to those in Type I or II factors. In terms of 
entanglement, we can expect ‘infinite entanglement’ but also ‘infinite fluctuations’ in 
this entanglement [25].

The origin of the term ‘factor’ may come from a tensor product factorization: Sup-
pose H = H1 ⊗ H2. Then F1 = B(H1) ⊗ ⊮ and F2 = ⊮ ⊗ B(H2) are factors of 
B(H ) [28, Exercise 3.3.8].

Unitary equivalence preserves the type of the algebra and does not change it. As 
a consequence, there are no unitary operators, permutations, or any other operations 
within the framework of von Neumann algebras that can convert, say, a type I factor 
into a type II or III factor.

To facilitate transitions between factor types, more powerful tools than unitary 
operations are needed. One such tool (among others) is the use of inductive limits, 
which enable the construction of large and complex algebras from simpler, smaller 
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ones [29]. To transition from type I factors to type II factors, sequences or non-trace-
preserving embeddings that ’diffuse’ the trace structure are required.

3  Nested Wigner’s Friends as Infinite Tensor Products

Nesting or chaining refers to the repeated and iterated application of the von Neu-
mann type measurement-by-entanglement, as formalized by (1), as expressed to first 
order by Wigner [30]. As a consequence, we end up with large and potentially infinite 
tensor products. It is tempting to ascribe this measurement conceptualization to von 
Neumann [31, 32].

Grangier and Van Den Bossche have recently proposed that the apparent loss of 
coherence in such situations is attributable to sectorization and the consequent loss 
of unitary equivalence within finite systems  [17, 33–35], as previously discussed 
in subsection  2.4. According to their proposal, sectorization is a physical process 
in infinite algebras where separable sectors correspond to ‘classical outcomes’ and 
‘macroscopic states’ of pointers [23, 36, 37]. The “context” is physically realized by 
the choice of a measurement basis, which is determined by the experimental arrange-
ment. An “observation” then corresponds to an interaction that entangles the system 
with the measurement apparatus, projecting the state into this chosen basis.

While a single such interaction is a standard unitary evolution of the combined 
system, the formalism of infinite tensor products suggests that an infinite sequence of 
such interactions forces the total state into one of the newly formed sectors. This tran-
sition to a different, orthogonal sector is what is meant by a “shift” that establishes 
a new macroscopic outcome. A subsequent measurement in an incompatible basis 
(a new context) would similarly drive the system into yet another distinct sector, a 
process described here as ‘reshuffling’ or ‘scrambling’ of contexts.

The connection between sectors and factors remains an open question. A fun-
damental difference is that factors pertain to algebras of operators—specifically, 
(generalized) density operators if a trace exists—while sectors pertain to (unitarily 
equivalent) elements or subspaces of Hilbert space.

For type I factors, some of these operators can be interpreted as pure (that is, 
‘minimal’ one-dimensional orthogonal projection operators) or mixed states. Indeed, 
intuition from finite tensor products suggests that, through spectral decomposition 
of the operators in a factor, the respective orthogonal projections in type In factors 
correspond to elements of contexts (associated with maximal operators, see  [10, 
Satz 8]). This implies that they refer to pure states spanned by vectors in the respec-
tive Hilbert space.

In finite dimensions, sectors do not carry much significance, as all vectors are 
unitarily equivalent. However, for infinite tensor products, sectorizations ‘form natu-
rally’ through the unitary equivalence of vectors (or their span, and the associated 
‘minimal’ one-dimensional orthogonal projection operators) and can be associated 
with macroscopic quantities.

The transition between different sectors does not correspond to any unitary trans-
formation, as these sectors are not unitarily equivalent. This results in an apparent 
loss of coherence, as different sectors cannot be in coherent superposition. Measure-
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ments with mismatched pre- and post-selection are linked to distinct sectorizations of 
the Hilbert space. In the context of infinite tensor products, such ‘context translations’ 
cannot be achieved through unitary operations.

Factorization offers another potential mechanism beyond unitary evolution: The 
infinite limit of nested Wigner’s friends, facilitated by entanglement, could enable 
transitions between distinct factor types. Consequently, both factorization and sec-
torization, in the infinite limit, might contribute to a loss of unitary equivalence and 
decoherence.

Furthermore, as previously discussed, any nesting construction is highly suscepti-
ble to alterations in the focus of observations by Wigner’s friends—specifically, with 
regard to changes in the sequence of entangled basis vectors. This sensitivity arises 
not only from potential state changes within a (Type I) factor, but also from the mis-
matches and entanglements that occur between infinite sequences of nested von Neu-
mann measurements, which can lead to transitions into distinct sectors and factors. 
Consequently, even the slightest mismatch and change in nested observables cumu-
latively leads to a complete loss of information about the initial state (preparation).

More explicitly, as has been pointed out earlier in the context of difficulties in 
defining the inner product, any slight mismatch between (successive) friends’ mea-
surements ‘builds up’ into a total loss of coherence. This results in a vanishing inner 
product ⟨Ψ|Ψ′⟩ which converges to zero, indicating that the product states |Ψ⟩ and 
|Ψ′⟩ are orthogonal even if each single mismatch characterized by ⟨ψi|ψ′

i⟩ is very 
close to 1. This type of ‘decoherence’ is gradual and smooth in the sense that there 
is no abrupt discontinuous transition—indicating a well-defined, localizable Heisen-
berg cut at some scale—but a gradual, continuous loss of information about the initial 
state: Let 0 ≪ |⟨ψi|ψ′

i⟩| = δi < 1 be this match per friends i and i′, then

	
|⟨Ψ|Ψ′⟩| =

∞∏
i=1

|⟨ψi|ψ′
i⟩| =

∞∏
i=1

δi = 0.� (4)

One could also interpret εi in δi = 1 − εi as a (measure of) stochastic ‘input’ per 
Wigner’s friend i that contributes to a context translation  [38, 39] but introduces 
additional input from the Wigner’s friend (environment). This is particularly true 
if Wigner’s friends attempt to ‘measure’ a state in which the quantum system is not 
prepared [12].

This model diverges from the reduction model of Hepp [23, 37] and the recent 
papers by Grangier and Van Den Bossche [17, 33–35] in that it proposes a sequence 
of mismatch measurements by Wigner’s friends that ultimately transcends sectors 
or even factors, and does not depend on sectorization, that is, the creation of sectors 
interpretable as macroscopic ‘pointers’.

Bell’s argument [40] against transfinite recursion remains valid for an infinite num-
ber of Wigner’s friends. However, his later FAPP argument [13]—that, although any 
Heisenberg cut is relative, it exists for all practical purposes and experimental capaci-
ties—can be maintained. I concur that any finite number of Wigner’s friends does not 
lead to a violation of unitary equivalence, and thus state reduction or decoherence.
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Grangier and Van Den Bossche circumvent Bell’s argument ontologically by pos-
iting that a dual quantum and classical description is necessary to understand quan-
tum mechanics [35]. They argue that the mathematical formalism should provide a 
consistent description, rather than a complete (isomorphic) representation of reality. 
In this context (see also the quote by Hertz mentioned later), the use of mathematical 
infinities becomes a valid tool for description.

Another approach to addressing Bell’s argument involves the concept of infinity 
processes, as discussed by Weyl [41, pp.41,42] in the context of Zeno’s paradoxes 
(of infinite divisibility). If we consider the continuum (or at least the infinite divis-
ibility of space and time), “if the segment of length 1 really consists of infinitely 
many subsegments of lengths 1/2, 1/4, 1/8, . . ., as of ‘chopped-off’ wholes, then it 
is incompatible with the character of the infinite as the ‘incompletable’ that Achil-
les should have been able to traverse them all.” This implies that even for classical 
motion in a continuum to be possible, we require transfinite capacities. This concept 
can be applied to the infinite nesting of Wigner’s friends by considering this nesting 
or chaining as the effective oneness which we experience; resulting in irreversible 
measurements in the transfinite limit.

4  Historical Analogues

To motivate the use of infinite limits as a tool for explaining emergent irreversibil-
ity, this section presents analogies from other fields of mathematics and physics 
where infinite processes lead to qualitatively new phenomena not present in their 
finite counterparts. These examples are intended as heuristic support to demonstrate 
a recurring structural parallel, rather than as direct physical evidence for the quantum 
mechanical argument. This section explores several related but distinct concepts that 
have been investigated in various areas of physics.

4.1  Infinity and Transfinite Capacities

This concept is similar to the convergence of sequences of ratio-
nal numbers to an irrational number in the real numbers. For instance, 
consider the continued fraction or the binomial series expansions 
√

2 = (1 + 1)1/2 =
∑∞

n=0

(
1/2
n

)
· 1n = 1 + 1

2 · 1 − 1
8 · 12 + 1

16 · 13 − · · ·  of 

√
2, truncated at various points.

Another analogue is from recursive analysis: Specker sequences of computable 
numbers converge to an uncomputable limit [4, 5, 42, 43]. One example is Chaitin’s 
constant, the halting probability of prefix-free program codes on a universal com-
puter [7, 44], whose rate of convergence is tied to the halting time, and therefore, 
‘grows faster’ than any computable function.
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Many of these metamathematical results are based on Cantor’s diagonal argu-
ment [45], which demonstrates that, ‘in the limit, enumerable sets become non-enu-
merable continua’.

4.2  Statistical Physics

Loschmidt’s Umkehreinwand  [46] poses a challenge to the concept of irreversible 
processes at the macroscopic level, given the time-reversibility of microphysical 
laws. Loschmidt argued that if the microscopic laws are reversible, then any macro-
scopic process should also be reversible if we could precisely reverse the velocities 
of all particles in a system. This appears to contradict our everyday experience of 
irreversible processes and the postulate of the increase of entropy.

The canonical response to the Umkehreinwand may seem evasive: while tech-
nically correct, due to statistical-probabilistic considerations, the Umkehreinwand 
is means-relative [47] and therefore only FAPP [13] invalid. This is exemplified in 
Maxwell’s pragmatic approach, avoiding detailed inquiries about individual mole-
cules that would complicate the argument [48, 49]: “avoiding all personal inquiries 
[[about individual molecules]] which would only get me into trouble.”

One example of ‘irreversibility-in-the-limit’ is the computation of 
√

2, as men-
tioned in the aforementioned two examples: the continued fraction expansion yields 

1, 3
2 , 7

5 , 17
12 , 41

29 , 99
70 , 239

169 , 577
408 , 1393

985 , 3363
2378 , . . . ,

√
2, whereas the binomial series expan-

sion yields 1, 3
2 , 11

8 , 23
16 , 179

128 , 365
256 , 1439

1024 , 2911
2048 , 46147

32768 , 93009
65536 , . . . ,

√
2. Suppose that we 

delete all common terms from the two series. Then we end up with two series that 
are different, yet their limit is the same. (Alternatively, take just the binomial series 
and rescale its summands by adding the term 1/n to each summand.) Once the limit 
is reached, and no memory is maintained, it is impossible to determine which of the 
two series the result originates from [50].

5  Summary

We have presented both formal and pragmatic (FAPP) arguments for converting uni-
tary, reversible von Neumann-Everett type 2 processes into non-unitary, irrevers-
ible type 1 processes. This conversion utilizes infinite tensor products, which, unlike 
in finite-dimensional Hilbert spaces, are not bound by unitarity. While objections 
may arise regarding the operational correspondence of infinite mathematical pro-
cesses [51], a more practical approach involves considering finite subsequences or 
prefixes of these constructions.

These prefixes can be viewed as nested, iterated, or chained Wigner’s friends, 
each encountering growing challenges in retrieving the original information from a 
quantum state, particularly when there is a discrepancy between state preparation and 
measurement. This phenomenon is reminiscent of environmental monitoring, result-
ing in quantum decoherence [52, 53], where environmental interactions lead to a loss 
of quantum coherence.
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Parallels can also be drawn to noise introduction in micro-state amplification [54], 
which illustrates the quantum no-cloning theorem and the disruption of quantum 
states through interactions or measurements.

The proposed mechanism can be contrasted with other solutions to the measure-
ment problem. Unlike objective collapse models, it does not postulate a new physi-
cal collapse mechanism. In contrast to standard Everettian interpretations, the sector 
structure implies that not all branches of the universal state are equivalent, as tran-
sitions between them are forbidden by finite unitary means. And while the model 
shares features with decoherence, which also relies on interaction with a large envi-
ronment, the use of infinite tensor products provides a formal basis for a strict, rather 
than merely practical (FAPP), breakdown of unitary equivalence between macro-
scopic outcomes.

The framework presented here also shares significant conceptual ground with 
standard decoherence theory, yet it is distinguished by a crucial formal difference. 
Both approaches attribute the loss of quantum coherence to the system’s entangle-
ment with a larger, more complex entity—be it a physical environment or, in this 
paper’s model, an infinite chain of observers. The selection of a preferred basis (the 
’pointer basis’ in decoherence) is analogous to the formation of sectors corresponding 
to macroscopic outcomes. The primary divergence, however, lies in the nature of the 
resulting irreversibility. Standard decoherence describes a practical (FAPP) process 
within a finite, albeit large, system-environment composite. The global evolution 
remains unitary, and coherence is merely ’leaked’ into the environmental degrees 
of freedom, becoming locally inaccessible but never truly destroyed. In contrast, the 
mechanism proposed here, leveraging the mathematical properties of the infinite ten-
sor product limit, describes a formal and absolute breakdown of unitary equivalence. 
The emergence of sectors is not a matter of information being difficult to retrieve; 
it is a structural feature of the infinite-dimensional Hilbert space where states in dif-
ferent sectors are mathematically non-interconvertible by finite unitary means. Thus, 
while decoherence explains the appearance of classicality in a fundamentally unitary 
world, this paper’s formalism offers a mathematical route to the emergence of genu-
ine, non-unitary irreversibility in the thermodynamic limit.

Schrödinger’s ‘jellification’ argument  [55] emphasizes the possibility of unob-
served quantum states ‘spreading’ as coherent superpositions without being fixed by 
irreversible measurement. Nesting Wigner’s friends provides a solution characterized 
by three key aspects: (i) The incorporation of environmental information, unrelated to 
the original state, leads to FAPP uncontrollable (but not irreducible [56]) systematic 
stochasticity, successfully converting the original (preselected) state into the mea-
sured (postselected) state. (ii) Sectorization, which involves the effective orthogonal-
ization and partitioning of the Hilbert space into macroscopic regions corresponding 
to measurement outcomes, illustrates the practical difficulties of maintaining coher-
ence when scaling up the system to macroscopic dimensions [17, 33–35]. (iii) Fac-
torization, occurring according to the depth and modes of entanglement among the 
Wigner’s friends, additionally contributes to the emergence of classical-like behavior.

The processes of sectorization, which leads to the emergence of macroscopic 
observables, and factorization, which involves entanglement and the perception of 
isolated measurement outcomes, both contribute to the loss of coherence and the 
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formation of non-unitarily equivalent states in the infinite tensor product limit. Given 
the pivotal role of entanglement in both nested Wigner’s friends and factorization, it 
is not totally unreasonable to conjecture a connection between these two phenomena.

Resolutions of the quantum measurement problem and the Umkehreinwand in 
statistical physics through means relativity entail significant epistemological com-
mitments. Previous attempts to simulate measurement processes using von Neumann 
algebras, such as those by Hepp [23], have faced criticism for relying on transfinite 
concepts without operational validation [37, 40]. Nonetheless, these findings could 
be reconciled by adopting the perspective that “(FAPP) Infinity (FAPP) Does It.”

Classical analysis, recursive function theory, and von Neumann algebras offer 
potential ontological frameworks or ’escape routes’ from uniform reversibility and 
unitarity. However, their viability depends on the acceptance of infinite limits as 
meaningful physical concepts [57]. Modern resolutions of Zeno’s and the Eleatics’ 
paradoxes suggest that without infinite limits and transfinite capacities, there is no 
motion in a continuum.

Another straightforward pragmatic approach could be considered: Since this paper 
employs infinite processes to dispel unitary equivalence, one could avoid the infinite 
limit by transcribing the discussion into the framework of ‘for all practical purposes’ 
(FAPP). For operationalists who prefer to avoid the use of strict limits, the term 
‘limit’ can be substituted with ‘FAPP unboundedness’ or ‘too-large-to-handle,’ and 
the symbol ∞ can be replaced with ∞FAPP.

Yet, we must remain cognizant that both FAPP and transfinite irreversibility remain 
mathematical constructs, Hertz’s ‘images of our imagination’ [58] which ultimately 
are justified by their practical usefulness and correspondence with phenomenology. 
We should therefore exercise caution, not conflating the practical utility of our mod-
els with absolute certainty about physical reality.

Quantum erasure arguments [59–62] and the Humpty-Dumpty problem [63–65] 
further illustrate the challenges of reversibility and state reconstruction. In a simi-
lar manner to classical statistical arguments, a macrostate corresponds to numerous 
microstates, making reversal attempts futile and mirroring the quantum context.

In my opinion, we cannot accept classical irreversibility without accepting irrevers-
ible quantum measurement; conversely, FAPP insistence on classical and quantum 
reversibility expresses the same resistance towards transfinite, possibly nonconstruc-
tive means. Pointedly stated, the central question in this comparative aspect becomes: 
What is a viable position towards Loschmidt’s Umkehreinwand, and how does this 
stance translate to quantum measurement? Whatever answer one might feel comfort-
able with regarding classical irreversibility, one may apply its analog to quantum 
measurement irreversibility. In both domains, the conceptualization [66] of macro-
scopic observables through grouping and sectorization, as well as the entanglement-
driven factorization in the infinite limit, challenge our notions of reversibility.

Ultimately, the parallel between classical and quantum irreversibility underscores 
a fundamental unity in physics, while also highlighting the epistemological chal-
lenges and commitments we face in bridging the gap between our finite experimental 
capabilities and the infinite limits of our theoretical constructs.
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