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(FAPP) Infinity Does Macroscopic
Irreversibility from Microscopic Reversibility

Karl Svozil'

Abstract

Infinity is central to deriving macroscopic irreversibility from reversible microscopic laws across mathematics, theoretical
computer science and physics. In analysis, infinite processes—such as Dedekind cuts and Cauchy sequences—construct real
numbers as equivalence classes of rational approximations, bridging discrete rationals to the continuous real line. In quantum
mechanics, infinite tensor products model nested measurements, where sectorization partitions the Hilbert space into
equivalence classes, reconciling unitary evolution with wavefunction collapse. In statistical mechanics, macrostates emerge as
equivalence classes of microstates sharing identical macroscopic properties, providing the statistical basis for thermodynamic
irreversibility despite reversible dynamics. Equivalence relations formalize For-All-Practical-Purposes (FAPP) indistinguish-
ability, reflecting operational limits on precision and observation. Together, these examples reveal a unified framework where

infinity and equivalence underpin emergent macroscopic behavior from microscopic reversibility.
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From Rationals to Reals: The Role of Infinity

The construction of the real numbers from the rational
numbers is a fundamental topic in mathematical analysis,
highlighting the necessity of infinite processes. The rational
numbers, denoted by @, are countable and dense in the real
numbers, but they are incomplete. This incompleteness arises
because there exist ‘gaps’ in QQ that correspond to irrational
numbers. To fill these gaps and construct the real numbers, R,
mathematicians employ infinite methods, such as continued
fractions. Two prominent approaches are Dedekind cuts and
Cauchy sequences, both of which rely on the concept of
infinity. The discussion will explore methods employing
infinite means that transcend from rational to irrational
numbers, then progress through Specker sequences to un-
computable numbers, and finally examine Omega sequences
leading to algorithmically incompressible random reals. At
this point, concerns about the physical operationality of these
infinite means will be set aside, with the issue revisited later in
the discussion.

Dedekind Cuts

A Dedekind cut partitions the rational numbers into two non-
empty sets A and B such that every element of 4 is less than
every element of B, and A4 contains no greatest element. The
cut represents a real number, which may be rational or

irrational. For example, the cut corresponding to v/2 is de-
fined by:

A={xcQ|x*<2}, B={xcQ|x*>2}.

This construction inherently involves an infinite sets 4 and B.
The completeness of the real continuum is embodied by the
property that every such cut corresponds to a unique real
number, effectively filling the ‘irrational gaps between’ ra-
tionals. This construction vividly illustrates that the limit of a
sequence—often an irrational number—can be captured only
through an infinite process corresponding to the infinite sets 4
and B.

Similarly, surreal numbers, introduced by Conway (2001)
and explored in a mathematical dialogue by Knuth (1974), are
constructed recursively as equivalence classes of pairs of sets
of surreal numbers, subject to the condition that every ele-
ment of the first set is less than every element of the second
set. The construction begins with the empty set. At each stage,
new numbers are defined as {L|R}, where L and R are sets of
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previously constructed numbers, provided that every member
of L is less than every member of R. This Dedekind cut-like
procedure, iterated transfinitely and allowing L and R to be
infinite, produces not only all standard real numbers but also a
vast continuum of infinite and infinitesimal numbers. Thus,
from the initial void—the empty set { | } identified with the
number 0—this infinite process generates a comprehensive
universe of numbers, truly ex nihilo omnia (everything out of
nothing).

Cauchy Sequences

Another method to construct the real numbers is through
Cauchy sequences of rational numbers. A Cauchy sequence
(xn);_; is a sequence whose elements become arbitrarily
close to each other as the sequence progresses. Formally, for
every € > 0, there exists an integer N such that for all m, n> N,
|x,, — x,| < €. The real numbers are then defined as equiv-
alence classes of Cauchy sequences, where two sequences are
equivalent if their difference converges to zero. This process
also relies on infinity, as the convergence of the sequence is an
infinite phenomenon.

Infinite Decimal Expansions

A more familiar representation is that of infinite decimal ex-
pansions. Any real number can be expressed as an infinite
sequence of digits, xo. x1x,X3. .., which in turn can be viewed as
an infinite sum. This representation not only emphasizes the
necessity of an infinite process but also shows how numbers
that cannot be finitely represented (such as irrational numbers)
naturally arise from the completion of an endless procedure.

Cantor’s Diagonalization and Irrational Numbers

Cantor’s diagonalization argument is a powerful tool that
demonstrates the uncountability of the real numbers and pro-
vides a method to construct irrational numbers from rationals
through an infinite process. Consider an enumeration of all
rational numbers in the interval [0, 1], say rq, 5, 73, .... Each
rational number »; can be expressed as an infinite decimal
expansion. By constructing a new number x whose n-th decimal
digit differs from the n-th decimal digit of 7,,, we ensure that x is
distinct from every rational number in the list. For instance, if the
n-th digit of r,, is d,,, define the n-th digit of x as d, + 1 mod 10.
The resulting number x is irrational, as it cannot correspond to
any rational number in the enumeration. This construction
explicitly relies on an infinite process that ‘constructs’ an ir-
rational number (Bridgman, 1934; Yanofsky, 2003).

No Continua Without Infinite Means

The transition from the rational numbers to the real
numbers—whether through Dedekind cuts, Cauchy

sequences, or infinite decimal expansions—as well as Can-
tor’s diagonalization argument necessitates the use of infinite
means. These Zeno-type constructions underscore the in-
dispensable role of infinity in bridging the gap between the
countable realm of Q and the uncountable continuum of R:
No finite procedure that starts with a finite set of rational
numbers and uses only a finite number of operations can
produce an irrational number.

Whether the infinities inherently present in (classical)
continua can be put to any operational physical use remains
an open question (Svozil, 1995). Suffice it to say that the
assumption of continua, as well as the selection of one of their
elements via the axiom of choice, is a key ingredient in the
apparent oxymoron that is the widely used term deterministic
chaos.

Noson Yanofsky has noted that the procedural approach
used here to generate the continuum and other mathematical
entities, such as irrational or uncomputable numbers, in-
cluding through methods like diagonalization, could be
criticized. The criticism stems from the view that tools like
Dedekind cuts and Cauchy sequences describe or represent
numbers rather than actually constructing them (Yanofsky,
2025)]. However, while this raises a relevant metamathe-
matical concern, it ultimately hinges on a matter of philo-
sophical perspective.

Specker Sequences and the Role of Infinity

Just as infinity plays an indispensable role in the transition
from rational to irrational numbers and in the conceptuali-
zation of mathematical continua, Specker sequences provide
a profound illustration of how infinity can lead us from the
computable to the uncomputable, thereby selecting a subset
of irrationals by tightening criteria. Almost all reals are of
this type.

A Specker sequence is a computable, monotonically in-
creasing, bounded sequence of rational numbers whose limit
is an uncomputable real number (Kreisel, 1974; Specker,
1949). Formally, a sequence (a,),_, is a Specker sequence if:

(1) Each a, is a computable rational number

(2) The sequence is strictly increasing: a,, < a,+1 for all n

(3) The sequence is bounded above: there exists L € Q
such that a, < L for all n

(4) The limit lim,,_,..a, is not a computable number

The existence of such sequences demonstrates that the
infinite completion of even well-behaved, computable objects
can yield entities beyond algorithmic reach. The essence of
Specker’s construction is to encode an undecidable property
into the convergence behavior of the sequence. Although
each term a,, is produced by a finite, effective algorithm, the
process of converging to L is intrinsically infinite—any at-
tempt to specify a convergence criterion would require
solving a problem that is uncomputable—indeed, to quote an
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early, informal intuition by Paul Ehrenfest, such a conver-
gence criterion “grows beyond any specifiable size”
(Ehrenfest, 1909). In this way, the limit L becomes an un-
computable real number even though it is the limit of a
computable (recursive) sequence.

Chaitin’s Omega as the Ultimate Specker Sequence

Perhaps the most profound example of a limit of a Specker

sequence is Chaitin’s Omega ({), often called the ‘halting

probability’ (Chaitin, 1975). This number represents the

probability that a randomly constructed self-delimiting pro-

gram will halt when run on a universal Turing machine.
Chaitin’s () can be expressed as:

0= szlp\

p halts

where the sum is taken over all self-delimiting programs p
that halt, and |p| denotes the length of program p in bits.
() can be approximated by rational numbers:

Z 2—lpl

p halts within
n steps

Qn =

The sequence (€),,);_, is a Specker sequence—each (), is
computable for ‘small’ n (Calude & Dinneen, 2007), the
sequence is monotonically increasing, bounded above by 1,
yet its limit () is uncomputable. The uncomputable nature of
Q) stems from the fact that knowledge of its binary expansion
would allow us to solve the Halting Problem, which is
provable impossible. Each additional bit of precision in ()
encodes the solution to increasingly complex instances of the
Halting Problem. There does not exist any computable
convergence criterion: just as for computing the nth bit of a
Busy Beaver function, the time to compute those instances (),
outgrows any computable function of » (Chaitin, 1987).

All of the above reveals a fundamental qualitative shift at
infinity—one that goes beyond mere quantitative change:
Infinity generates fundamentally new mathematical objects.
The rational numbers, all of which are computable, give rise
through infinite processes to real numbers that no algorithm
can fully capture.

The transition from the finite to the infinite marks a
profound divide between what is algorithmically accessible
and what remains beyond reach. While we can approximate
Q) arbitrarily closely using computable methods, we can never
compute it exactly. Specker sequences thus demonstrate that
infinity is not merely a convenient mathematical abstraction
but a necessary concept that marks the boundary between the
computable and the uncomputable, between what can be
algorithmically constructed and what can only be defined
through infinite convergence. Indeed, despite random reals
(Martin-Lo6f, 1966) constituting almost all irrational numbers,

locating specific instances through computational, finite, or
physically operational means remains provably impossible
(Calude, 2002).

Specker sequences and Chaitin’s Omega are not defined
using equivalence classes in their original formulations. But
they are related to equivalence classes in how they can be
introduced: They are indirectly tied through the Cauchy
sequence construction of real numbers, where their limits are
equivalence classes.

Infinite Tensor Products and the Quantum
Measurement Problem

Infinite tensor products, when interpreted as infinite chains of
nested measurements, provide a compelling framework for
addressing the quantum measurement problem. By intro-
ducing disruptions to unitary equivalence through sectori-
zation and factorization, this approach offers a potential
reconciliation between the unitary evolution of quantum
systems and the apparent collapse of the wavefunction during
measurement.

The quantum measurement problem remains one of the
most profound challenges in quantum mechanics, arising
from the apparent inconsistency between two fundamental
processes identified by von Neumann in 1932 (von Neumann,
1932, Everett, 1957; von Neumann, 1932). These processes
are:

Process 1: The discontinuous, probabilistic change in a
quantum state upon measurement. For a system in a
superposition y = > ;cip;, observing a quantity with
eigenstates ¢, ¢,, ... collapses the state to ¢; with
probability |c;*.

Process 2: The continuous, deterministic evolution of an
isolated system’s state according to the Schrodinger

equation, Ow/0t = Uy, where U is a unitary operator.

The crux of the measurement problem is whether the
unitary evolution (Process 2) can fully account for the collapse
observed in measurements (Process 1), or if an additional
mechanism is required. This section explores the use of infinite
tensor products, interpreted as infinite nestings of Wigner’s
friend scenarios, as a potential resolution to this problem.

Infinite Tensor Products in Nested
Measurement Scenarios

A promising approach to addressing the measurement
problem involves infinite tensor products, which model an
infinite sequence of observers, each measuring the system
observed by the previous observer. This setup is reminiscent
of Wigner’s friend thought experiments, where the act of
measurement is recursively applied. Unlike finite tensor
products, infinite tensor products can disrupt unitary
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equivalence through mechanisms such as sectorization and
factorization, potentially providing a bridge between unitary
evolution and the apparent collapse of the wavefunction.

The Von Neumann-Landau Measurement Scheme

In the von Neumann-Landau framework, the measurement
process is modeled by the interaction between an object and a
measurement apparatus. The object is prepared in a state
ly) = >_7_,a:lw;), which is a superposition relative to the
measurement basis. The measurement apparatus is repre-
sented by. another state |¢) = > i-1bjld;). Upon interaction,
the combined state of the object and apparatus becomes:

'¥) = Z cily) @),
=

where the coefficients ¢; cannot be factorized, indicating
entanglement between the object and the apparatus.

While this scheme is straightforward for finite systems,
extending it to an infinite chain of measurements—where
each measurement is itself measured by another observer, ad
infinitum—requires the use of infinite tensor products. This
extension is mathematically non-trivial and was first rigor-
ously studied by von Neumann (1939).

The construction of the infinite tensor product space
proceeds as follows:

(1) Begin with elementary tensors of the form ®%_, |k,).
(2) Define the inner product between two elementary
tensors as:

(& 101 8109 ) = 0,
provided the product converges; otherwise, it is zero.

(3) Consider finite linear combinations of these ele-
mentary tensors:

Z:Ci n@l ‘ks) >’

where c; are complex coefficients and \kﬁp) are basis vectors.

(4) Obtain the complete Hilbert space ®;,_, H,, by taking
the closure of the space of finite linear combinations.

This construction introduces several challenges that must
be addressed to fully understand its implications for the
measurement problem.

Challenges with Infinite Tensor Products

Cardindlity. As pointed out by von Neumann (1939), a fun-
damental issue with infinite tensor products is the

uncountable cardinality of the resulting space. Just as the real
numbers cannot be enumerated by a countable set, the infinite
tensor product space cannot be spanned by a countable basis.
Such generalizations involve nonseparable Hilbert spaces and
higher set-theoretical powers of their orthonomal bases,
thereby spoiling unitary equivalence with (in)finite-dimen-
sional separable Hilbert spaces.
The interval (0,1) can be represented in binary form as

{0.x130x;3... | x;€{0,1} foralli e N}.

Here, each x; is a binary digit (0 or 1), and the sequence
extends indefinitely. This set of all infinite binary sequences is
uncountable, with cardinality

{0, 1} =2%,

which, by Cantor’s diagonal argument mentioned earlier, is
strictly larger than the cardinality £, of the natural numbers.

In close analogy, consider an infinite sequence of qubits,
where each qubit is a two-state quantum system with basis
states |0) and |1). A product state in the infinite tensor product
is written as

|XIXQX3...> = |X|>®|X2>®|X3>®“‘ )

with x; € {0, 1} forall i € N. The collection of all such product
states corresponds exactly to the set of infinite binary se-
quences, hence its cardinality is also 2®°.

A denumerable set of product states is any countable
subset of the infinite tensor product states. For instance, the
set

{]000...), 100...), [010...), ...}

can be put into a one-to-one correspondence with the
natural numbers N and thus has cardinality £,. Clearly,
®) < 2®,

A Hilbert space is separable if it has a countable (finite or
infinite) orthonormal basis; otherwise it is called non-
separable. Two Hilbert spaces H; and H, are unitarily
equivalent if and only if they have the same dimension (that
is, their orthonormal bases share the same cardinality). More
explicitly, if |e;) and |f;) are denumerable orthonormal bases
for separable H; and H,, respectively, then the unitary op-
erator is given by

U= Ihel:

In our scenario, the full Hilbert space of the infinite tensor
product space is nonseparable, as it has an orthonormal basis
consisting of product states with cardinality 2®°. Any can-
didate unitary operator mapping a countable (denumerable)
subset of product states (with cardinality £) to the full set
must preserve the inner-product structure and be surjective
onto the basis. However, since a unitary map must preserve
the cardinality of an orthonormal basis, and we have
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®(<2®, no such unitary operator can exist that maps a
countable subset onto the full uncountable basis.

Inner Product and Orthogonality. Another significant challenge
arises in defining the inner product for infinite tensor prod-
ucts. For two states |¥) = @2, |x;) and |®) = @2, |y;), the
inner product is given by:

0

(¥j0) = [Ttxl).
Ifeach (x]y;) =1 — ¢ with 0 < ¢; < 1, and if the series Y | €
diverges, then:

ilj(l — €)=exp ( i e,~> —0.

This implies that states which are only slightly different
across infinitely many components can have an inner
product that approaches zero, making them effectively or-
thogonal. Moreover, if the states differ in even a single
component such that (x;|y;) = 0 for some £, the entire inner
product becomes zero, regardless of the similarity in other
components. This behavior disrupts traditional notions of
orthogonality and complicates the interpretation of mea-
surement outcomes.

Sectorization as a Solution

To address these issues, von Neumann (1939) proposed
partitioning the infinite tensor product space into disjoint
‘regions’ or sectors—equivalence classes of states that are
‘close’ to each other in a specific sense. Two states |¥) and
|®) are considered to be in the same sector if:

©

Z(l — |(xilyi)]) <oo.

i=1

This condition ensures that the states differ significantly in
only finitely many components. These sectors can be thought
of as corresponding to distinct macroscopic or classical
outcomes, potentially offering a way to interpret measure-
ment results within the framework of unitary evolution
(Grangier, 2021; Van Den Bossche & Grangier, 2023a,
2023a, 2023b).

Factorization and Unitary Equivalence

A further opportunity arises from the entanglement of infinite
components, which can lead to different types of factors (e.g.,
type I, II, or Il in von Neumann algebra classification) that
are not unitarily equivalent. This lack of unitary equivalence
suggests a mechanism by which the infinite tensor product
space can accommodate irreversible processes, such as those
observed in quantum measurements.

Role of Equivalence Classes

In sectorization, equivalence classes are employed to par-
tition the infinite tensor product space into distinct sectors,
each comprising states that are equivalent modulo differ-
ences in only finitely many components. This classification
is pivotal for associating each sector with a specific, classical
measurement outcome, thereby offering a framework to
reconcile the continuous, unitary evolution of quantum
systems with the discrete nature of observed measurement
results. Furthermore, the lack of unitary equivalence be-
tween different sectors—stemming from the factorization of
the space—underscores the critical role of equivalence
classes in establishing the irreversibility characteristic of the
quantum measurement process. By defining these equiva-
lence classes, sectorization simplifies the handling of
complex quantum systems and provides insight into the
transition from quantum superpositions to definite classical
states.

Infinite Precision Microstates and the
Emergence of Macroscopic Irreversibility

A common starting point in statistical physics is to describe
an isolated many-particle system by specifying its microstate
with infinite precision. In principle, if every particle’s position
and momentum were known exactly, the time-reversible
microscopic laws (that is, Newtonian or unitary quantum
dynamics) imply that every evolution has a time-reversed
twin. This observation is at the heart of Loschmidt’s Um-
kehreinwand [reversal objection, as for instance reviewed by
Darrigol (2021)]: If one were able to precisely reverse the
velocities of all particles, then every macroscopic process
(such as the free expansion of a gas) would be exactly re-
versible. In other words, entropy would remain constant with
infinite precision.

In an extreme scenario where a hidden entity, such as
Maxwell’s demon, manipulates a system at the microphysical
level with infinite precision—unbeknownst to observers who
are limited to finite precision macroscopic measurements—
the demon could orchestrate processes like the spontaneous
unmixing of two previously mixed gases. This would make
entropy appear to decrease from the observers’ macroscopic
perspective, creating the illusion of a contradiction with the
second law of thermodynamics, which states that entropy in
an isolated system cannot decrease over time.

However, concepts such as physical means and demons
manipulating microstates with infinite precision is an ideal-
ized notion. In reality, our ability to specify, measure, or
manipulate microscopic degrees of freedom in any physical
system is operationally limited. These practical constraints
mean that microstates can only be defined with finite pre-
cision. Consequently, when attempting to reverse a system’s
evolution, the unavoidable small uncertainties are amplified
through the system’s complex (often chaotic) dynamics.
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Moreover, the concept of means-relative reversibility
emphasizes that while the microscopic laws are symmetric,
the notion of a reversible process depends on the precision
and the scale at which the state is defined. Maxwell’s
pragmatic approach— avoiding all personal inquiries [[about
individual molecules]] which would only get me into trouble”
(Garber et al., 1995; Maxwell, 1897)—illustrates that the
coarse-grained description relevant for thermodynamics de-
liberately sidesteps the need for infinite precision. In this
framework, macroscopic irreversibility emerges from the
overwhelming statistical likelihood that a system will evolve
toward states of higher entropy, even though the underlying
equations are time-symmetric.

The Ehrenfest urn model (Ehrenfest & Ehrenfest, 1906)
provides an elementary probabilistic illustration suggesting
that entropy, viewed microphysically, might even decrease.
Consider two urns initially containing an uneven distribution
of balls, with most in the first urn. Assume a constant
probability per time step for any ball to transfer to the other
urn. As the system evolves, it will most likely approach an
equilibrium state with roughly equal numbers of balls (a 50:
50 ratio) in both urns, corresponding to maximum entropy in
this analogy. However, even from this high-probability
equilibrium state, fluctuations are possible. Poincaré’s re-
currence theorem implies that after an ‘enormously long
time,’ it is not only possible but inevitable that the system will
return to highly improbable states, such as having all balls
collected in a single urn. Therefore, the eventual reappearance
of these low-entropy configurations—what Ehrenfest and
Ehrenfest (1906) called ‘outliers’ or Buckel—cannot be
ruled out; indeed, their absence over sufficiently long
timescales would be extremely improbable. This guaranteed
recurrence forms the basis of Zermelo’s Wiederkehreinwand
(recurrence objection) against monotonic entropy increase at
maximal (microphysical) resolution. The simulation results
depicted in Figure 1 demonstrate the system’s tendency to-
wards a state of higher entropy (equilibrium), punctuated by
fluctuations that manifest as temporary, occasional decreases
in entropy. Moreover, if the system is capable of universal
computation, recurrence times for certain ‘computationally
complex, resource-intensive’ states—such as those associated
with the halting probability Omega mentioned earlie—can
be expected to grow ‘beyond any specifiable size’, potentially
faster than any recursive (computable) lower bound (Svozil,
1993).

In statistical mechanics, a macroscopic state is essentially
an equivalence class, where the equivalence relation is de-
fined by the condition that two microscopic states are con-
sidered equivalent if they share the same values for
macroscopic variables, such as energy or volume. In the
aforementioned example, macroscopic states with roughly
equal numbers of balls (a 50:50 ratio) in both urns are much
more likely than macroscopic states characterized by outliers
with the same number of balls. Therefore, macroscopic
systems tend to evolve toward entropy increase.

For example, in a gas, all possible molecular arrangements
that result in the same pressure and temperature belong to the
same macroscopic state. Consequently, microscopic states
can be formally ‘bundled together’ or ‘grouped’ based on
macroscopic equivalence: If they cannot be distinguished
through operational means at the macroscopic level, they are
defined as equivalent. The corresponding binary equivalence
relation, applied to microstates, naturally satisfies the prop-
erties of reflexivity, symmetry, and transitivity.

In summary, while the mathematical description of a
system in terms of infinite precision microstates leads to
reversible trajectories, the physical impossibility of achieving
such precision guarantees that real systems display irre-
versible behavior. The irreversible macroscopic laws of
thermodynamics are thus understood as emergent, effective
descriptions that arise from practical limitations on precision
and the statistical averaging over an enormous number of
microstates. The physical means define an equivalence re-
lation on microphysical states. The corresponding equiva-
lence classes can be identified with macroscopic states.

Formalization of FAPPness by
Equivalence Relations

In an early critique of sectorization-type arguments (Bub,
2015; Hepp, 1972) reviewed in Section 2.4, Bell (1975)
argued that unlimited or even actually infinite means are
physically unattainable. Later Bell (1990) introduced the
related concept of For-All-Practical-Purposes (FAPP),
which replaces transfinite means with finite, physically
operational ones.

The concept of FAPP indistinguishability can be rigor-
ously formalized using equivalence relations. In different
physical contexts, these equivalence relations partition mi-
croscopic configurations into equivalence classes, grouping
together states that are operationally indistinguishable at a
higher level of description. The three primary instantiations
of such equivalence classes, as discussed in previous
sections, are:

Classical Analysis

In classical mechanics and dynamical systems, coarse-
graining leads to an effective partitioning of phase space
into equivalence classes. Two microstates belong to the same
class if they yield identical macroscopic observables within a
given resolution limit. This follows naturally from mea-
surement constraints and computational limitations in prac-
tical analysis.

Sectorization in Quantum Mechanics

In quantum theory, the emergence of classical-like behavior is
often described using superselection sectors or decoherence-
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Figure |I. Evolution of the number of balls in Urn | (blue) and Urn 2 (dotted, orange) in the Ehrenfest Urn Model (N = 100, 1000 steps),
starting from a low-entropy state with Urn | filled and Urn 2 empty. The dashed line marks the equilibrium state (N/2 = 50). The simulation
highlights the system’s relaxation towards equilibrium and the persistent fluctuations around it, illustrating the microscopic reversibility that

underlies Zermelo’s recurrence objection.

induced equivalence classes. Here, quantum states that differ
only by superpositions within a decohered basis (due to
environmental interactions) become practically indistin-
guishable. Such states effectively belong to the same
equivalence class, as they do not interfere and cannot be
resolved through macroscopic measurements.

Macrostates in Statistical Physics

In statistical mechanics, a macroscopic state corresponds to
an equivalence class of microstates that share the same
macroscopic variables, such as energy, volume, or magne-
tization. Since individual microstates fluctuate rapidly and are
inaccessible in practice, all configurations that yield the same
macroscopic properties are grouped together, forming a
thermodynamic macrostate.

In all three cases, the corresponding equivalence relation
on microstates satisfies reflexivity, symmetry, and transitivity,
ensuring a well-defined partitioning of state space. This
formalization captures the essence of FAPP reasoning, where
practical indistinguishability justifies the use of equivalence
classes in physical descriptions.

Conclusion

This paper explored the role of infinity in bridging micro-
scopic and macroscopic descriptions in physics, focusing on
the emergence of irreversibility from reversible dynamics. We
examined how infinite processes are essential in mathemat-
ical constructions, such as the transition from rational to real
numbers, and how they manifest in physical theories, from
statistical mechanics to quantum measurement.

In classical analysis, infinite precision is a theoretical
idealization that is unattainable in practice. The necessity of
coarse-graining and finite resolution in measurements leads

naturally to the formation of equivalence classes that group
together states indistinguishable for all practical purposes
(FAPP). This provides a foundation for understanding
macroscopic irreversibility despite the underlying time-
reversible microscopic laws.

In quantum mechanics, infinite tensor products and sec-
torization offer a framework for understanding the transition
from unitary evolution to apparent wavefunction collapse.
Von Neumann’s insights (von Neumann, 1939) emphasize
that the full set of product states in an infinite tensor product is
uncountably infinite, with a cardinality of 2®°. The resulting
space is nonseparable. This sharply contrasts with any
countable subset, which has a cardinality of £; here, the
distinction reflects the difference between nonseparability
and separability. Since unitary operators preserve the inner
product structure—and, consequently, the cardinality of any
orthonormal basis—no unitary transformation can map a
countable subset onto the full uncountable set. Therefore,
under constraints such as (finite or infinite) denumerable
group actions, unitary equivalence fails in the limit of infinite
tensor products. The partitioning of Hilbert space into
equivalence classes through decoherence-induced super-
selection rules highlights how quantum-to-classical transi-
tions can emerge from infinite degrees of freedom.

In statistical mechanics, macrostates are equivalence
classes of microstates that share the same macroscopic ob-
servables, such as energy or volume. The practical impos-
sibility of resolving individual microstates supports the
statistical interpretation of thermodynamic irreversibility.

By formalizing Bell’s FAPP approach using equivalence
relations, we provided a unifying perspective on how oper-
ational indistinguishability underlies emergent macroscopic
behavior. Across classical analysis, quantum mechanics, and
statistical physics, equivalence classes play a crucial role in
describing physical reality at different scales. This
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perspective underscores the foundational role of infinity in
physics and its implications for the nature of measurement,
irreversibility, and emergent phenomena.
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