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Chromatic quantum contextuality is a criterion of quantum nonclassicality based on (hyper)graph coloring
constraints. If a quantum hypergraph requires more colors than the number of outcomes per maximal observable
(context), it lacks a classical realization with n-uniform outcomes per context. Consequently, it cannot represent
a “completable” non-contextual set of coexisting n-ary outcomes per maximal observable. This result serves
as a chromatic analogue of the Kochen-Specker theorem. We present an explicit example of a four-colorable
quantum logic in dimension three. Furthermore, chromatic contextuality suggests a novel restriction on classical
truth values, thereby excluding two-valued measures that cannot be extended to n-ary colorings. Using this
framework, we establish new bounds for the house, pentagon, and pentagram hypergraphs, refining previous

constraints.
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I. CONTEXTS AS MAXIMAL OBSERVABLES

In operator-valued arguments, a context can be seen as
being capable of potentially encoding and utilizing maximal
knowledge of a system—all that can be conceivably extracted
from a single ‘maximal’ measurement [[1]].

A context can, through the spectral theorem, be identi-
fied with an orthonormal basis with elements |e;), or, alter-
natively, the associated mutually orthogonal, self-adjoint pro-
jection operators |e;){e;|. These can be bundled together by a
non-degenerate spectral sum (decomposition) as Y, a;|e;) (e;]
with real-valued a; which are mutually distinct, to form a
self-adjoint maximal operator introduced by von Neumann [2}
Satz 8, p. 221f]; a good description is given by Halmos [3}
§ 84, p. 171f1].

A maximal (and thus non-degenerate) operator, or its corre-
sponding context, represents the totality of what can be ideally
measured—no more, no less. In this case, the measurement
resolution is at its finest, corresponding to individual basis
elements |e;). Equivalently, it pertains to the (mutually or-
thogonal) one-dimensional subspaces spanned by these basis
elements, and the respective property of “being in the state
lei)”.

In contrast, a two-valued measure resolves a single one-
dimensional subspace spanned by |e;), assigning it the value
1, while the rest, an (n — 1)-dimensional subspace in an n-
dimensional Hilbert space, is assigned the value 0. Any or-
thonormal basis element of this (n — 1)-dimensional subspace
is assigned the value 0.

Therefore, a coloring by mutually different numbers, pa-
rameters, outcomes or colors a; yields not only a finer res-
olution than two-valued states can offer, but corresponds to
an optimal experimental extraction of data from a state by a
maximal operator. In physics, we need to insist on (at least in
principle) maximal conceivable resolution—all that could at
least in principle be measured.
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II. CONNECTION TO CHROMATIC NUMBER OF
HYPERGRAPHS

Hypergraphs [4] are extensively utilized in quantum logics
to model propositions and the contexts (Boolean subalgebras)
to which they belong [SH8]. In this framework, each Boolean
subalgebra—also known as a block, maximal operator, or-
thonormal basis, or context—is represented by a hyperedge
in the hypergraph. These hyperedges are visually depicted as
smooth lines connecting the vertices that correspond to the
propositions within that subalgebra. The structure of the hy-
pergraph captures the orthogonality relations among proposi-
tions, where propositions within the same hyperedge are pair-
wise orthogonal [9} [10]. For a recent detailed exposition of
these concepts, including precise definitions and illustrative
examples, the reader is referred to Ref. [L1]].

In the context of hypergraph coloring each maximal observ-
able corresponds to a hyperedge, and the vertices represent the
possible outcomes or states associated with that observable.
The exclusivity requirement—that no hyperedge can have two
or more of its vertices colored the same—reflects the quantum
mechanical constraint that a maximal observable cannot yield
two or more outcomes for any of its possible eigenstates.

A further completeness requirement states that all colors
must occur in each hyperedge, meaning that no hyperedge
lacks a color necessary for coloring the entire hypergraph.
Thus, the chromatic number of the hypergraph provides a
measure of the minimal number of distinct outcomes needed
to satisfy these constraints.

A coloring of a hypergraph is said to be admissible if it
is both exclusive and complete. If no admissible coloring
exists—that is, if the chromatic number exceeds the number of
vertices per hyperedge—this indicates that no conceivable and
possible coloring (relative to admissibility, that is, the exclu-
sivity and completeness rules) exists. This ‘excess of required
outcomes’, in turn, highlights the nonclassical nature of the
respective collection of quantum observables corresponding
to the hypergraph (with vector vertex labels).

In what follows, we shall only consider n-uniform hyper-
graphs with an equal number # of vertices per edge. As argued
earlier, every edge of such a hypergraph can be identified with
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a context, and a maximal observable. We shall consider color-
ings of such hypergraphs as color assignments to its vertices
such that no hyperedge has vertices with the same color: every
hyperedge contains vertices in n different colors.

The chromatic number k of a hypergraph is the minimal
number of colors required to achieve a coloring satisfying ex-
clusivity. Note that this not necessarily means that the col-
oring satisfies completeness. We note in passing that, unlike
the terminology used here, a proper coloring of a hypergraph
often refers to an assignment of colors to its vertices such that
each hyperedge contains at least two vertices of different col-
ors.

Moreover, a k-uniform proper coloring of a hypergraph is
an assignment of colors to its vertices such that all colors are
assigned to an equal number of vertices [12]]. This implies
that the assignment of colors partitions the set of vertices into
disjoint subsets of equal size.

If kK = n we obtain a ‘canonical’ k-uniform proper coloring
of n-uniform hypergraphs, which are particularly important
for physics: Any such coloring can be reduced to a two-valued
state through aggregation: assigning a single color the value
1 while mapping all other k — 1 colors to 0 [13]. However, the
inverse is not possible: As will be discussed later, the mere
existence of two-valued states does not guarantee a chromatic
number n [11, Appendix B, p. 032104-16f].

Any admissible coloring—respecting both exclusivity and
completeness—corresponds to a value assignment that main-
tains maximal resolution within each context. In the hyper-
graph coloring framework, each maximal observable is rep-
resented by a hyperedge, with vertices corresponding to its
possible outcomes or eigenstates. The constraint that no hy-
peredge can contain two or more identically colored vertices
reflects the quantum mechanical principle that a maximal ob-
servable cannot yield identical outcomes for distinct eigen-
states. Additionally, each hyperedge must include all neces-
sary colors to properly color the hypergraph. Since the chro-
matic number of the hypergraph quantifies the exact number
of distinct outcomes required to meet these constraints, any
deviation exceeding the uniform number of vertices per hy-
peredge indicates the nonclassical nature of quantum systems.

If we can identify a quantum-representable hypergraph—
one that permits a faithful orthogonal representation [9, [10,
14]]—that is uniform with n vertices per hyperedge and has a
chromatic number exceeding n, then we can demonstrate that
this configuration does not correspond to a physically realiz-
able (classical counterfactual) measurement setup with non-
contextual, coexisting uniform outcomes. We may perceive
this as a form of chromatic contextuality.

Chromatic contextuality differs from the theorems of
Kochen-Specker, Greenberger-Horne-Zeilinger [15], or
Hardy’s paradox [16], which can all be expressed as ar-
guments involving two-valued states, although some of
them can be written in terms of operator values. The mere
existence of a two-valued state—amounting to, within a
given context, assigning a unique value (say, ‘1’) to one
outcome and a different, single value (say, ‘0’) to all other
outcomes—is, by itself, insufficient to prove that mutually
distinct outcomes—associated with that context’s maximal

observable—pre-exist; in particular, when demanding uni-
form consistency across all possible intertwining contexts
(thereby necessarily involving counterfactual nondegenerate
outcomes also for unchosen measurements). This is true even
if the set of two-valued states is separable—meaning that
there exists at least one two-valued state that separates every
pair of vertices—because such configurations may not allow
the potential acquisition (through counterfactual experiments)
of maximal knowledge (per context).

Clearly, in the Kochen-Specker cases, there is no two-
valued state and thus no coloring. However, we might hope
to find find ‘smaller hypergraphs’ (with a ‘small’ number of
edges or vertices) that have no coloring with n colors but still
have (even a separating set of) two-valued states conforming
to the demarcation Theorem 0 of Kochen and Specker [[17].

III. PREVIOUS RESULTS

There exists a set representable hypergraph that does not
allow a coloring whose required minimal number of colors
exceeds the number of vertices per edge: Its graph Gs; has
been early discussed by Greechie [5, Figure 6, p. 121] (see
also Refs. [[18H21]). G3, is a 3-uniform hypergraph with 15
bi-intertwined vertices in 10 contexts. It supports a separat-
ing set of two-valued states. Its chromatic number is 4 [L1,
Appendix B, p. 032104-16f].

IV. CHROMATIC NUMBER OF THE YO-OH
HYPERGRAPH

In a proof by contradiction, suppose the Yo-Oh configura-
tion [22] of quantum observables (propositions), as depicted
by a 3-uniform hypergraph in a previous publication [23|
Chapter 12, p. 92] and redrawn in Figure [I] can be colored
with three colors: red, green, and blue.

Without loss of generality, we can assume Ay is red. Then,
¥7» Y, » and y; must be either green or blue.

Assuming all are colored green leads to a contradiction, as
the context {z1,22,23} would then lack the color green.

Therefore, at least one of y;, y,, and y; must be colored
differently. By symmetry, without loss of generality, let y;
and y, be green, and y; be blue, as depicted in Figures
and [3] (a) and (b), respectively. Then, z; as well as z> cannot
be green, and z3 cannot be blue.

Case 1

Suppose that z; is red. Then, z> must be blue, and z3 must
be green, as depicted in Figure 2Jc) and (d). We can now
assign colors to the three contexts {y; ",y ,z1}, {¥3 5,22}
and {y7,y3 ,2z3} by assigning blue to y;, red to y; , and red to
y;, respectively, as depicted in Figure e) and (f).

Consequently, sy cannot be red because y3+ is red, nor
green, as y; is green, nor blue as y; is blue, and all y7, y;,
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(Color online) Redraw [23, Chapter 12, p. 92] of two equivalent representations (a) and (b) of a Petersen graph-like (with one

additional context connecting zj, z2, and z3) hypergraph of the logic considered by Yu and Oh [22} Fig. 2]. The set of two-valued states enforces
at most one of the four atoms hg, A1, ha, h3 to be 1. The logic has a (quantum) realization in R consisting of the 25 projections; associated
with the one dimensional subspaces spanned by the 13 vectors from the origin (0,0,0)T to z; = (1,0,0)T, z5 = (0,1,0)7, z3 = (0,0,1)T,
y; =(0,1,—D)T, y5 = (1,0,—D)7, y; = (1,-1,0)T, y{ = (0,1, )T, y = (1,0,)T, y7 = (1,1,0)T, hp = (1,1, )T, hy = (—1,1,1)T,

hy=(1,—1,1)T, h3 = (1,1,—1)7, respectively [22].
and y; are adjacent to h,.

Case 2

Suppose that z; is blue. Then z; must be red, and z3 must
be green, as depicted in Figure [3[c) and (d).

Consequently, y;” must be red, y; must be blue, and y;
must be red. Additionally, 43 must be green, and s, must be
blue. As before, we can now assign colors to the three con-
texts {y;,yy,z1}, {V3.55 .22}, and {y7,y3 ,z3} by assigning
red to yl+ and y3+ , and blue to y2+ , respectively, as depicted in
Figure[3{e) and (f)..

Now A cannot be red because ygr is red, nor green, as y;
is green, nor blue as y; is blue, and all yJ, y;, and y; are
adjacent to h;.

It is not difficult to work out a coloring of the Yu-Oh hy-
pergraph with four colors. Therefore, its chromatic number
is 4. In passing, we note that it has a separating set of 24
two-valued measures.

V. SUMMARY

Chromatic contextuality, characterized by the impossibility
of admissibly coloring an n-uniform hypergraph with n colors
per hyperedge, presents a compelling case against the exis-
tence of classical (noncontextual) hidden parameters. In this
way, chromatic contextuality resembles Kochen-Specker con-
textuality, which is defined by the absence of uniform two-
valued states [[17, 24]], or admissible states [25]]. Chromatic
contextuality can be viewed as an extreme form of operator-
valued argument, given that the number of values involved is

equivalent to the number of vertices in each context-edge of
the hypergraph.

Chromatic contextuality, in contrast to Kochen-Specker
contextuality, constitutes a distinct criterion for nonclassical-
ity: The respective hypergraphs and the collection of quan-
tum observables they represent may still support two-valued
states and even permit (though not necessarily imply) classical
embeddability through a separating set of two-valued states.
This is exemplified by Greechie’s G3, hypergraph, which ad-
mits a set representation in terms of a partition logic [11, Ap-
pendix B, p. 032104-16f].

Moreover, any n-coloring can be directly converted into a
two-valued state—indeed, into n two-valued states—by ag-
gregation, that is, by reducing or folding the number of n
colors into two. This can be done by identifying a single
color with the value 1 and all remaining colors with 0. In
this way, the set of observables encoding the hypergraph is
equi-partitioned.

Alternatively, an n-coloring can be used by identifying
more than one color with a non-zero value [26], for example,
identifying two colors with the value 1/2. A single coloring
thus defines a canonical set of n two-valued states covering
the entire hypergraph [[11, Appendix A].

However, the converse is not true: The existence of even
separating sets of two-valued states does not imply the exis-
tence of a coloring, as demonstrated by the aforementioned
example of G3;.

It is quite remarkable that not all such colorings can be
derived from the nonexclusive hypergraph coloring scheme
discussed above. In particular, the exotic two-times-1/2 col-
oring of the pentagon (or house or pentagram) on intertwin-
ing context-hyperedges, as exposed by Greechie [27, Fig-
ure 5, p. 186] and Wright [28| mp, p. 268], cannot be obtained



FIG. 2. (Color online) Case 1 of the proof that the Yu-Oh hypergraph depicted in Figure [T] cannot be (noncontextually) colored by three

colors: its chromatic number is four.

through identifying colors. The reason for this is a parity ar-
gument: For an odd number of hyperedges, such as five, there
cannot exist a coloring with the same color assigned to all
(odd-numbered) intertwining vertices.

By the same parity reasoning, one of the eleven two-valued

states of the pentagon, in which all the values are assigned
to the nonintertwining ‘middle’ vertices, does not originate
from the aggregation from a hypergraph coloring. Suppose
one of the colors, say red, is always centered in the mid-
dle; this would imply that the other two colors, say green



FIG. 3. (Color online) Case 2 of the proof that the Yu-Oh hypergraph depicted in Figure |I| cannot be (noncontextually) colored by three

colors: its chromatic number is four.

and blue, must alternate at the five vertices with intertwining
contexts. However, for an odd number of such intertwining
vertices, this leads to a disallowed configuration; more ex-
plicitly, to green-red-blue-red-green-red-blue-red-green-red-
green (from cycle). If this two-valued state is eliminated,

the Hull computation still yields Klyachko’s pentagram in-
equality [29, Equation (5)], along with an additional upper
bound: 1 > A3+ Ass +As7 + A9+ Ag; > —3. This ex-
plicit house-pentagon-pentagram example also demonstrates
that, for hyperedges with more than two vertices, not all two-



valued states can necessarily be derived by aggregation—the
irreversible mapping of one color to the value 1 and all other
colors to 0. The Bub and Stairs inequality [30] remains unaf-
fected as they do not use the ‘color-fobidden middle-center’
two-valued state. This topic is too broad to be fully addressed
within the scope of this paper.

For physical reasons we suggest that every two-valued state
should ultimately originate from ‘perfect’, that is, maximal,
measurements corresponding to colorings. Therefore, only
two-valued states that are derived through aggregation should
be considered when deriving, for instance, Boole-Bell-type
inequalities by solving the Hull problem for the respective
correlation polytope [31} 132]]. Two-valued states that cannot
be represented by aggregation from colorings are unphysical
in the sense that no (classical) maximal observables or con-
texts exist that could justify their inclusion.

The chromatic analogue of True-Implies-False (TIFs) and
True-Implies-True (TITs) gadgets [33]], which exhibit a dis-
tinct form of contextuality, such as Hardy-type [16], has not
yet been explored in the context of hypergraph colorings. Ad-

ditionally, the concept of chromatic separability, similar to
Kochen-Specker’s demarcation criterion of (non)separability
with respect to two-valued states, remains to be discussed.
For instance, does nonseparability by two-valued states im-
ply chromatic nonseparability? We note that Kochen and
Specker’s I's [17]] is also color nonseparable. Is aggregation
sufficient for the inheritance of such properties? These topics
require future investigation.
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