
Physics Open 24 (2025) 100298 

A
2

 

Contents lists available at ScienceDirect

Physics Open

journal homepage: www.elsevier.com/locate/physo  

Orbits of one-dimensional cellular automata induced by symmetry 

transformations
Martin Schaller a , Karl Svozil b ,∗

a Vienna, Austria
b Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10/136, 1040 Vienna, Austria

A R T I C L E  I N F O

Handling Editor: Gabriele Coniglio
Keywords:
One-dimensional cellular automata
Symmetry transformations
G-isomorphism

 A B S T R A C T

Using a group-theoretic approach, a method for determining the equivalence classes (also called orbits) of 
the set of rules of one-dimensional cellular automata induced by the symmetry operations of reflection and 
permutation and their product is presented. Orbits are classified by their isomorphism type. Results for the 
number of orbits and the number of orbits by type for state sets of size two and three are included.
1. Introduction

1.1. The physical relevance of cellular automata

Cellular Automata (CAs) are mathematical constructs that model 
systems composed of discrete components evolving over time according 
to simple local rules. Despite their simplicity, CAs exhibit remarkable 
phenomenological complexity, making them powerful tools for study-
ing a wide range of natural and computational phenomena. Beyond 
their abstract utility, CAs hold profound potential physical relevance 
as models for discrete universes and simulations, offering insights into 
the fundamental principles underlying locally governed (though not 
necessarily spatially localized) universes and the dynamics of com-
plex systems. Their capacity for Church-Turing universal computation, 
including the self-reproduction of universal devices within their frame-
work, provides metaphors that may extend to continuous physical 
models.

Historically, Konrad Zuse, in his seminal work Rechnender Raum
(Calculating Space) [1–3], proposed the bold hypothesis that the uni-
verse itself could be interpreted as a vast computational structure 
evolving through local updates. Zuse’s digital physics posits that space, 
time, and matter are inherently discrete, with their evolution governed 
by computational rules analogous to those of CAs. This perspective sug-
gests that physical laws are emergent properties of an underlying com-
putational substrate, where local interactions among discrete elements 
produce global patterns. In this context, CAs serve as ideal candidates 
for modelling a digital universe, offering a conceptual framework for 
exploring the computational essence of reality.
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Independently, John von Neumann, utilizing their algorithmic and 
computational aspects, provided another profound perspective on the 
significance of CAs, emphasizing their universality and self-replication 
capabilities [4]. Motivated by questions of biological self-reproduction 
and universal computation, von Neumann designed a CA capable of 
replicating itself. This achievement demonstrated that even within a 
simple, rule-based system, it is possible to encode the complexity of 
life-like processes and achieve computational universality. Von Neu-
mann’s work laid the foundation for studying self-reproducing systems, 
influencing fields ranging from artificial life to nanotechnology, and 
underscoring the potential of CAs to model the interplay between 
computation and dynamics.

CAs have also found extensive applications as models of dynamical 
systems. Their discrete, rule-driven structure makes them particularly 
suited for simulating phenomena where local interactions give rise to 
emergent behaviour, such as fluid dynamics, traffic flow, biological 
growth, and even aspects of quantum mechanics. Unlike continuum-
based models requiring analysis, CAs inherently capture the often 
granular, stepwise nature of many physical processes.

In sum, CAs embody a profound duality, functioning both as ab-
stract computational models and as physically relevant systems. From 
Zuse’s vision of a computational universe to von Neumann’s pioneer-
ing work on self-reproduction, CAs have reshaped our understanding 
of computation, biology, and the dynamics of physical systems. This 
interplay between simplicity and complexity places CAs at the heart of 
efforts to unify computational theory with the physical world.
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Their characterization in terms of equivalence through transfor-
mations such as reflection, state permutation, and their combinations 
represents a critical step toward understanding their potential. This 
study is motivated by such physical motivations.

1.2. Outline and previous work

A one-dimensional CA operates on a bi-infinite lattice of cells where 
each cell is in one state from a finite set of possible states. A compu-
tational step of the automaton comprises the following operations. For 
each cell the automaton reads the states of a small set of neighbouring 
cells including the cell itself. The values of the states read are used 
as input of a lookup table, called the local rule, that determines the 
new state of the cell. Then all cells are updated synchronously. The net 
effect of one computational step is the calculation of a new bi-infinite 
sequence of states.

Multiple iterative computational steps of the CA leads to a sequence 
of configurations, termed the evolution of the CA. If each configuration 
of a CA’s evolution is shifted the same number of cells to the left or to 
the right, the CA’s evolution is still governed by the same local rule. 
This fundamental property of CA is called shift invariance.

Other symmetry operations transform the local rule. If the CA’s 
evolution is reflected (or mirrored), the resulting evolution is governed 
by the reflected rule, which, in general, is different, to the unmirrored 
one. Reflection is thus a symmetry operation that transforms rules.

Similarly, since the states of a CA are merely labels, permutating 
the labels does not change the dynamic behaviour of the CA, but will 
in general result in a different local rule. Rules that can be transformed 
into each other under reflection or permutation or their product are 
considered equivalent. Consequently, the set of all CA rules splits up 
into classes of equivalent rules.

Wolfram [5] designated the family of one-dimensional CAs with 
two states and three neighbours as elementary. In [6], pp. 485–557, 
he gave a table that divided the 256 rules of the elementary CA into 
88 equivalence classes with respect to the symmetry operations of 
reflecting the lattice, permutation of the state set, and the product of 
these operations. A mathematical derivation of this result was carried 
out by Li and Packard [7]. Cattaneo et al. [8] studied a variety of 
transformations of the set of local rules, in particular, also the symmetry 
operations of two-state CAs to be discussed in this work. They gave, 
inter alias, the general result for the equivalence classes of two-state 
CAs with 2𝑟 + 1 neighbours, where 𝑟 is a nonnegative integer. The 
properties of symmetry transformations acting on CA rules have also 
been investigated, see e.g., [9]. Symmetry transformations were even 
extended to generalized CAs over groups, see [10].

Determining the equivalence classes is an elementary classification 
and serves both to understand the set of local rules in terms of symme-
try operations and to reduce the number of non-equivalent rules. There 
are a variety of other classification schemes. For instance, Wolfram’s 
classification [11] is based on the phenomenological behaviour of 
the dynamic evolution, the Culik-Yu classification [12] captures the 
computational complexity of the limit sets; see [13] for an overview. 
The classification by symmetry operations precedes these higher-level 
classifications as rules in an equivalence class are all in the same class 
of other classification schemes (at least they should be).

This study focuses on the equivalence classes of one-dimensional 
CAs induced by the symmetry transformations of reflection and permu-
tation and their product. The set of symmetry transformations forms a 
group which acts on the set of CA rules. Therefore group-theoretical 
concepts are applied to determine the equivalence classes of CAs. 
In group-theoretical notation, equivalence classes induced by group 
actions are called orbits, and this term is used in the following. One 
of the main results of this study is the provision of formulas that give 
the number of orbits for a state set of size two and three for any size 
of the neighbourhood. This study goes beyond the scope of previous 
2 
work by classifying the orbits according to their isomorphism type and 
deriving the cardinalities of these classes.

The organization of this study is as follows. Section 2 provides def-
initions on CAs and symmetry operators. Section 3 presents a method 
based on group actions to determine the number of orbits. Sections 4
and 5 contains the calculations for a state set of size two and size three 
respectively. Section 6 presents a brute-force algorithm that can be 
used to validate the results for small numbers of states and neighbours. 
Conclusion remarks are made in Section 7.

2. Definitions

2.1. One-dimensional cellular automata

The states of a CA are represented by symbols from a finite set, also 
called an alphabet. As the symbols only serve to designate the states, 
any finite set will do, so we choose the set 𝛴 = {0, 1,… , 𝑘 − 1} to 
represent a state set of size 𝑘. The size (or cardinality) of an arbitrary 
set 𝐴 is denoted by |𝐴|.

A word 𝑤 = 𝑥0𝑥1 … 𝑥𝑚−1 over an alphabet 𝛴 is a finite sequence 
of symbols from 𝛴 juxtaposed. The length of a word 𝑤, denoted |𝑤|, 
is the length of the sequence, that is |𝑥0𝑥1 … 𝑥𝑚−1| = 𝑚 (the notation 
|.| denotes both the size of a set and the length of a word). The set 
of all words of length 𝑚 over the alphabet 𝛴 is denoted by 𝛴𝑚. A 
configuration 𝑥 is a bi-infinite sequence over the alphabet 𝛴, defined 
as a mapping of Z into 𝛴. The 𝑖th element, 𝑖 ∈ Z, of a configuration 𝑥
is denoted by 𝑥𝑖.

Definition 1. 
A one-dimensional CA is a triple (𝑘,𝑁, 𝑓 ), where
𝑘 ≥ 2 is an integer, the number of states in the state set 𝛴 =

{0, 1,… , 𝑘 − 1};
𝑁 is the neighbourhood, a finite nonempty set of integers such that 

−𝑁 = 𝑁 + 𝑑 for an integer 𝑑;
𝑓 is the local rule, a function from 𝛴𝑛 to 𝛴.
Let 𝑛 = |𝑁| and 𝑁 = {𝑗0, 𝑗1,… , 𝑗𝑛−1} such that 𝑗0 < 𝑗1 <

⋯ < 𝑗𝑛−1. The local mapping 𝑓 induces the global mapping on 
the set of configurations 𝛷𝑁

𝑓 ∶ 𝛴Z → 𝛴Z, defined by 𝛷𝑁
𝑓 (𝑥)𝑖 =

𝑓 (𝑥𝑖+𝑗0𝑥𝑖+𝑗1 … 𝑥𝑖+𝑗𝑛−1 ).

We have used the notation −𝑁 = {−𝑗 | 𝑗 ∈ 𝑁} and 𝑁 + 𝑑 =
{𝑗 + 𝑑 | 𝑗 ∈ 𝑁}. If 𝑁 is given, we will write 𝛷𝑓  instead of 𝛷𝑁

𝑓 . 
Definition  1 is similar to the one used in [14,15] or [16], apart that 
we always use the first nonnegative integers as state set and more 
important that we introduce the constraint −𝑁 = 𝑁 + 𝑑 to later define 
the reflection operator in a meaningful way. If the CA is initialized 
with the configuration 𝑥, the CA computes in one step the configuration 
𝛷𝑓 (𝑥).

The shift operator 𝜎 operates on the set of configurations, it shifts a 
configuration one cell to the left, formally defined by 𝜎(𝑥)𝑖 = 𝑥𝑖+1. By 
the definition of the CA, the global mapping commutes with the shift 
operator: 𝛷𝑓 (𝜎(𝑥)) = 𝜎(𝛷𝑓 (𝑥)). A fundamental result of Hedlund [17] 
shows that an alternative, topological definition of an one-dimensional 
CA based on the shift operator and continuous mappings is equivalent 
to the one above. We contrast Definition  1 with another definition 
that is frequently found in literature, e.g. [18] or [11]. If 𝑝 and 𝑞 are 
integers, let [𝑝, 𝑞] denote the integer interval {𝑝, 𝑝 + 1,… , 𝑞}. 

Definition 2.  A radius-based CA is a CA (𝑘,𝑁, 𝑓 ) such that 𝑁 = [−𝑟, 𝑟], 
where 𝑟 is a nonnegative integer, called the radius of the CA.

The local mapping 𝑓 induces the global mapping 𝛷𝑓 (𝑥)𝑖
= 𝑓 (𝑥𝑖−𝑟𝑥𝑖−𝑟+1 … 𝑥𝑖+𝑟). Definition  2 encompasses only CAs with an 
odd (2𝑟 + 1) number of neighbours. The generalization to an even 
number of neighbours becomes cumbersome, e.g. by shifting the output 
configuration a half cell and introducing half-integers to index the 
configuration, see Kari [16], or by loss of symmetry, see Ruivo [19], 
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while Definition  1 enables a uniform treatment of all neighbourhood 
sizes.

If 𝑘 = |𝛴|, then the set 𝐿(𝑘, 𝑛) = {𝑓 | 𝑓 ∶ 𝛴𝑛 → 𝛴} is called the 
local rule space of the family of CAs with 𝑘 states and 𝑛 neighbours. 
The size of 𝐿(𝑘, 𝑛) is 𝑘𝑘𝑛 . If 𝑘 > 1, |𝐿(𝑘, 𝑛)| grows extremely fast as 
function of 𝑛: |𝐿(𝑘, 0)| = 𝑘, and |𝐿(𝑘, 𝑛 + 1)| = |𝐿(𝑘, 𝑛)|𝑘. The set 
𝐺(𝑘,𝑁) = {𝛷𝑓 | 𝑓 ∈ 𝐿(𝑘, |𝑁|)} is called the global rule space of the 
family of CAs with 𝑘 states and neighbourhood 𝑁 . 

Proposition 3.  If 𝐺(𝑘1, 𝑁1) = 𝐺(𝑘2, 𝑁2), then 𝑘1 = 𝑘2 and 𝑁1 = 𝑁2.

Proof.  If 𝑘1 ≠ 𝑘2, then clearly 𝐺(𝑘1, 𝑁1) ≠ 𝐺(𝑘2, 𝑁2). Suppose now that 
𝑘1 = 𝑘2 and 𝑁1 ≠ 𝑁2. Then 𝑁1 ⧵𝑁2 ∪𝑁2 ⧵𝑁1 is not empty. Without 
loss of generality, suppose 𝑁1 = {𝑗0,… , 𝑗𝑛−1} and 𝑗𝑝 ∈ 𝑁1 ⧵𝑁2. Define 
a local rule 𝑓 by 𝑓 (𝑎0 … 𝑎𝑛−1) = 1 only if 𝑎𝑝 = 1 and 𝑎𝑖 = 0 for 𝑖 ≠ 𝑝, and 
a configuration 𝑥 by 𝑥𝑗𝑝 = 1 and 𝑥𝑖 = 0 if 𝑖 ≠ 𝑗𝑝. Then 𝛷𝑁1

𝑓 (𝑥)𝑖 is 1 if 
𝑖 = 0 and 0 otherwise. Let 𝑔 ∈ 𝐿(𝑘, 𝑛) be arbitrary. If 𝛷𝑁2

𝑔 (𝑥)0 = 0 then 
𝛷𝑁1
𝑓 ≠ 𝛷𝑁2

𝑔 . If 𝛷𝑁2
𝑔 (𝑥)0 = 1, we conclude that 𝑔(0…0) = 1 and 𝛷𝑁2

𝑔 (𝑥)
contains infinitely many 1’s, so also 𝛷𝑁1

𝑓 ≠ 𝛷𝑁2
𝑔 . Thus, we have shown 

that 𝛷𝑁1
𝑓 ∉ 𝐺(𝑘,𝑁2). □

Note the following two cases. First, if 𝑁2 = 𝑁1 + 𝑞 for an integer 
𝑞, then 𝐺(𝑘,𝑁1) = {𝜎𝑞𝛷𝑓 |𝛷𝑓 ∈ 𝐺(𝑘,𝑁2)}. Second, if 𝑁2 ⊆ 𝑁1, then 
𝐺(𝑘,𝑁2) ⊆ 𝐺(𝑘,𝑁1).

2.2. Symmetry operations

The notion of the equivalence of one-dimensional CAs is based on 
two classes of symmetry operations: permutations of the state set and 
reflection of the configuration.

Let 𝑆𝑘 be the symmetric group of degree 𝑘, that is the set of all 
permutations of the set 𝛴 = {0, 1,… , 𝑘 − 1}, and suppose 𝛼 ∈ 𝑆𝑘. If 
𝑎 ∈ 𝛴 we write the image of 𝑎 under 𝛼 as product 𝛼𝑎. The extension of 
𝛼 to words and configurations is defined by elementwise application. 
If 𝑤 = 𝑎0 … 𝑎𝑛−1 ∈ 𝛴𝑛 is a word, set 𝛼𝑤 = (𝛼𝑎0)… (𝛼𝑎𝑛−1). If 𝑥 is a 
configuration, set (𝛼𝑥)𝑖 = 𝛼(𝑥𝑖). Suppose 𝑓 is a local rule that maps 𝛴𝑛

to 𝛴. The permutation operator 𝛼̂ is defined by 𝛼̂𝑓 (𝑤) = 𝛼𝑓 (𝛼−1𝑤) for 
all words 𝑤 ∈ 𝛴𝑛. It represents a transformation of the set of local 
rules. Note that the ‘‘hat’’ on the operator is necessary, because 𝛼𝑓
and 𝛼̂𝑓 are distinct entities. The first one is the composite function 
𝛼◦𝑓 , whereas the second represents the composite function 𝛼◦𝑓◦𝛼−1. 
If 𝛷𝑓  is the induced global mapping of 𝑓 , we define 𝛼̂𝛷𝑓  similarly: 
𝛼̂𝛷𝑓 (𝑥) = 𝛼𝛷𝑓 (𝛼−1𝑥) for all configurations 𝑥. From
(

𝛼̂𝛷𝑓 (𝑥)
)

𝑖 =
(

𝛼𝛷𝑓 (𝛼−1𝑥)
)

𝑖 = 𝛼𝑓
(

𝛼−1(𝑥𝑖+𝑗0 … 𝑥𝑖+𝑗𝑛−1 )
)

= 𝛼̂𝑓 (𝑥𝑖+𝑗0 … 𝑥𝑖+𝑗𝑛−1 ) = 𝛷𝛼̂𝑓 (𝑥)𝑖

follows 𝛼̂𝛷𝑓 = 𝛷𝛼̂𝑓 .
The second type of operator is the reflection operator. If 𝑤 =

𝑎0 … 𝑎𝑛−1 ∈ 𝛴𝑛 is a word over 𝛴, define 𝑟𝑤 = 𝑎𝑛−1 … 𝑎0. Note that 
𝑟𝑎 = 𝑎 for all 𝑎 ∈ 𝛴. If 𝑥 is a configuration, set (𝑟𝑥)𝑖 = 𝑥−𝑖. The reflection 
operator 𝑟̂ is defined by 𝑟̂𝑓 (𝑤) = 𝑓 (𝑟𝑤) and 𝑟̂𝛷𝑓 (𝑥) = 𝑟𝛷𝑓 (𝑟𝑥). Since 𝑟 is 
self-inverse, that is 𝑟−1 = 𝑟, we can also write ̂𝑟𝑓 (𝑤) = 𝑟𝑓 (𝑟−1𝑤), making 
the notation consistent with the one of the permutation operator.

From
(

𝑟̂𝛷𝑓 (𝑥)
)

𝑖 =
(

𝑟𝛷𝑓 (𝑟𝑥)
)

𝑖 =
(

𝛷𝑓 (𝑟𝑥)
)

−𝑖 = 𝑓
(

(𝑟𝑥)−𝑖+𝑗0 …(𝑟𝑥)−𝑖+𝑗𝑛−1
)

= 𝑓
(

𝑥𝑖−𝑗0 … 𝑥𝑖−𝑗𝑛−1
)

= 𝑓
(

𝑥𝑖+𝑗𝑛−1+𝑑 … 𝑥𝑖+𝑗0+𝑑
)

= 𝑓
(

𝑟(𝑥𝑖+𝑗0+𝑑 … 𝑥𝑖+𝑗𝑛−1+𝑑 )
)

= 𝑟̂𝑓
(

𝑥𝑖+𝑗0+𝑑 … 𝑥𝑖+𝑗𝑛−1+𝑑
)

=
(

𝛷𝑟̂𝑓 (𝑥)
)

𝑖+𝑑 ;

we conclude that 𝑟̂𝛷𝑓 = 𝜎𝑑𝛷𝑟̂𝑓 . If the CA complies with Definition  2 
the relation simplifies to 𝑟̂𝛷𝑓 = 𝛷𝑟̂𝑓 .

We call 𝑅 = {1, 𝑟}, the reflection group. The direct product of 𝑆𝑘
and 𝑅, written as 𝑆 𝑅, is the group that contains all permutations, the 
𝑘

3 
reflection and their products. Suppose that 𝛼̂ and 𝛽 are two operators. 
Then

𝛼̂𝛽𝑓 (𝑤) = 𝛼𝛽𝑓 (𝛼−1𝑤) = 𝛼𝛽𝑓 (𝛽−1𝛼−1𝑤) = 𝛼𝛽𝑓 (𝑤).

The operators form a group that is in general isomorphic to 𝑆𝑘𝑅, but 
for 𝑛 = 1 (or 𝑘 = 1) the relation is only a homomorphism. Note that 
the reflection operator commutes with all permutation operators. If the 
global mapping 𝛷𝑓  satisfies 𝛷𝑓 = 𝛼̂𝛷𝑓 , the CA is said to be invariant 
under the operator 𝛼̂.

The meaning of the operators defined above is illustrated by the 
following observation. Suppose 𝛼̂ is either one of the permutation 
operators or the reflection operator, and consider two radius-based CAs 
(Definition  2) with the same state set and the same radius and respec-
tively, with local rule 𝑓 and local rule 𝛼̂𝑓 . If the initial configuration of 
CA 𝐴 is 𝑥 and the one of CA 𝐵 is 𝛼𝑥, then the same 1–1 correspondence 
between the configurations established by 𝛼 persists for all iterations: 
𝛼𝛷𝑡

𝑓 (𝑥) = 𝛷𝑡
𝛼̂𝑓 (𝛼𝑥) holds for any positive integer 𝑡 (𝛷𝑡 denotes the 

𝑡th iteration of 𝛷). Suppose now that the CAs are of the general form 
of Definition  1. The same relation holds, if 𝛼 is a permutation, but if 
𝛼 = 𝑟, it changes. Then CA 𝐴 is after one step in configuration 𝛷𝑓 (𝑥), 
and CA 𝐵 in configuration 𝛷𝑟̂𝑓 (𝑟𝑥). Using 𝑟̂𝛷𝑓 = 𝜎𝑑𝛷𝑟̂𝑓 , we obtain 
𝛷𝑟̂𝑓 (𝑟𝑥) = 𝜎−𝑑 𝑟̂𝛷𝑓 (𝑟𝑥) = 𝜎−𝑑𝑟𝛷𝑓 (𝑥), so 𝑟𝛷𝑓 (𝑥) = 𝜎𝑑𝛷𝑟̂𝑓 (𝑟𝑥). For any 
number 𝑡 of steps, the relation becomes 𝑟𝛷𝑡

𝑓 (𝑥) = 𝜎𝑑𝑡𝛷𝑡
𝑟̂𝑓 (𝑟𝑥).

3. Preliminaries

3.1. Groups and group actions

We assume some basic knowledge of groups as it can be found 
in introductory textbooks, e.g. [20,21], or [22]. However, we briefly 
introduce the notation that is used in the following, define group 
actions and related concepts and state some propositions about them, 
all of these to be found in more depth and more relaxed pace in the 
references above.

Let 𝐻 be a subgroup of 𝐺, denoted by 𝐻 ≤ 𝐺. If 𝑔 ∈ 𝐺, the left coset 
of 𝐻 in 𝐺 is defined by 𝑔𝐻 = {𝑔ℎ | ℎ ∈ 𝐻}. The index [𝐺 ∶ 𝐻] of 𝐻
in 𝐺 denotes the number of left cosets of 𝐻 in 𝐺. Lagrange’s theorem 
states that |𝐺| = [𝐺 ∶ 𝐻] × |𝐻|. If 𝑔 ∈ 𝐺, the conjugate of 𝐻 by 𝑔 is the 
set 𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 | ℎ ∈ 𝐻}, which is also a subgroup isomorphic to 
𝐻 . A subgroup 𝑁 of 𝐺 is called normal if 𝑔𝑁𝑔−1 = 𝑁 for all 𝑔 ∈ 𝐺.

A group action of a group 𝐺 on a set 𝐴 is a map from 𝐺 × 𝐴 to 𝐴
satisfying the following properties:

(i) 𝑔1(𝑔2𝑎) = (𝑔1𝑔2)𝑎 for all 𝑔1, 𝑔2 ∈ 𝐺, 𝑎 ∈ 𝐴, and
(ii) 1𝑎 = 𝑎, for all 𝑎 ∈ 𝐴.

The relation on 𝐴, defined by 𝑎 ∼ 𝑏 if and only if 𝑎 = 𝑔𝑏 for some 𝑔 ∈
𝐺, is an equivalence relation. The equivalence classes [𝑎] = {𝑔𝑎 | 𝑔 ∈ 𝐺}
are called 𝐺-orbits (or just orbits), and the set of orbits forms a partition 
of 𝐴, denoted by 𝐴∕𝐺. The length of an orbit [𝑎] is its size |[𝑎]|. An 
element 𝑎 ∈ 𝐴 is fixed by 𝑔 ∈ 𝐺 if 𝑔𝑎 = 𝑎. The set of all group members 
that fix an element 𝑎 ∈ 𝐴 is called the stabilizer of 𝑎, that is the set 
stab(𝑎) = {𝑔 ∈ 𝐺 | 𝑔𝑎 = 𝑎}, which forms a subgroup of 𝐺. If 𝑔 ∈ 𝐺, the 
set of all fixed points of 𝑔 is denoted by f ix(𝑔) = {𝑎 ∈ 𝐴 | 𝑔𝑎 = 𝑔}. 
The notation is generalized to subgroups. If 𝐻 ≤ 𝐺, then the set 
f ix(𝐻) = {𝑎 ∈ 𝐴 | 𝑔𝑎 = 𝑎 for all 𝑔 ∈ 𝐻} =

⋂

𝑔∈𝐻 f ix(𝑔), consists of all 
elements of 𝐴 that are fixed points for all 𝑔 ∈ 𝐻 .

Proposition 4 (Orbit-Stabilizer Theorem). If the group 𝐺 acts on 𝐴 and 
𝑎 ∈ 𝐴, then the length of the 𝐺-orbit which contains 𝑎 is equal to the index 
of the stabilizer of 𝑎 in 𝐺:
|[𝑎]| = [𝐺 ∶ stab(𝑎)].

Proof.  The map 𝑔𝑎 ↦ 𝑔stab(𝑎) that associates the element 𝑔𝑎 of the 
orbit with the left coset 𝑔stab(𝑎) is well-defined and bijective. □
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Every group G acts on the family of all its subgroups by conjugation. 
The orbits of this group action are called conjugacy classes. If 𝐻 ≤
𝐺, then the conjugacy class of 𝐻 is the set of subgroups [𝐻] =
{𝐻 ′ ≤ 𝐺 |𝐻 ′ = 𝑔𝐻𝑔−1 for some 𝑔 ∈ 𝐺}. The set of conjugacy classes is 
denoted by 𝒞 (𝐺). If 𝐻 ≤ 𝐺 and 𝐻 is normal, then the orbit containing 
𝐻 is a singleton. If 𝐺 is abelian, each orbit of 𝒞 (𝐺) is a singleton. If 𝐻1
and 𝐻2 are subgroups of 𝐺, the relation 𝐻1 ≤ 𝐻2 is a partial order on 
the set of subgroups. It induces a partial order on 𝒞 (𝐺) by [𝐻1] ≤ [𝐻2]
if and only if there is a 𝐻 ′

1 ∈ [𝐻1] and a 𝐻 ′
2 ∈ [𝐻2] such that 𝐻 ′

1 ≤ 𝐻 ′
2. 

The lattice (𝒞 (𝐺),≤) is called the reduced subgroup lattice of 𝐺.
We consider again a group 𝐺 acting on an (arbitrary) set 𝐴. The 

orbit 𝑂 ∈ 𝐴∕𝐺 is said to be of type [𝐻] ∈ 𝒞 (𝐺) if the stabilizer of 
some 𝑎 in 𝑂 belongs to [𝐻]. If two orbits 𝑂1 and 𝑂2 are of the same 
type, then there is a bijection 𝜑 ∶ 𝑂1 → 𝑂2, such that 𝜑(𝑔𝑎) = 𝑔𝜑(𝑎) for 
all 𝑔 ∈ 𝐺 and all 𝑎 ∈ 𝑂1. The function 𝜑 is called a 𝐺-isomorphism. 
Define type(𝐴∕𝐺,𝐻) = {𝑂 ∈ 𝐴∕𝐺 | the type of 𝑂 is [𝐻]}. Note that 
|𝐴∕𝐺| =

∑

[𝐻]∈𝒞 (𝐺) |type(𝐴∕𝐺,𝐻)|.
Having established the terminology, we consider now the family 

of one-dimensional CAs with 𝑘 states and 𝑛 neighbours. The mapping 
𝑆𝑘𝑅 × 𝐿(𝑘, 𝑛) → 𝐿(𝑘, 𝑛); (𝛼, 𝑓 ) ↦ 𝛼̂𝑓 fulfils the properties of a group 
action. If 𝑓 ∈ 𝐿(𝑘, 𝑛), the orbit of 𝑓 is the set [𝑓 ] = {𝛼̂𝑓 | 𝛼 ∈ 𝑆𝑘𝑅}
and the set of all orbits is denoted by 𝐿(𝑘, 𝑛)∕𝑆𝑘𝑅. Local rules in the 
same orbit are connected by symmetry transformations, while orbits 
of the same type cannot be distinguished by symmetry transformations 
alone. We abbreviate type(𝐿(𝑘, 𝑛)∕𝑆𝑘𝑅,𝐻) to type(𝑘, 𝑛,𝐻). The aim of 
this study is to develop a method for determining 𝐿(𝑘, 𝑛)∕𝑆𝑘𝑅 and 
the sets type(𝑘, 𝑛,𝐻) where [𝐻] ∈ 𝒞 (𝑆𝑘𝑅), and in particular to derive 
formulas for the cardinalities of these sets.

3.2. Counting orbits

The following lemma relates the number of orbits to the number of 
fixed points of the group elements.

Proposition 5 (Burnside’s Lemma). Let 𝐺 be a group acting on the set 𝐴. 
The number of 𝐺-orbits is

|𝐴∕𝐺| = 1
|𝐺|

∑

𝑔∈𝐺
|f ix(𝑔)|.

Proof.  In the sum ∑𝑔∈𝐺 |f ix(𝑔)|, each 𝑎 ∈ 𝐴 is counted |stab(𝑎)| times 
(for stab(𝑎) consists of all those 𝑔 ∈ 𝐺 which fix 𝑎). If 𝑎 and 𝑏 lie in the 
same orbit, then 𝑏 = 𝑔𝑎 for a 𝑔 ∈ 𝐺. This implies stab(𝑏) = 𝑔stab(𝑎)𝑔−1, 
and in particular |stab(𝑏)| = |stab(𝑎)|. So, the [𝐺 ∶ stab(𝑎)] elements 
constituting the orbit of 𝑎 are, in the above sum, collectively counted 
[𝐺 ∶ stab(𝑎)]×|stab(𝑎)| times. Each orbit thus contributes |𝐺| to the sum, 
and so ∑𝑔∈𝐺 f ix(𝑔) = |𝐴∕𝐺| × |𝐺|. □

The proof was adapted from [22]. Burnside’s lemma gives the total 
number of orbits. Since we are also interested in the distribution of 
orbits by type, we will use the following method in Sections 4 and 5. 
Let [𝐻] ∈ 𝒞 (𝐺). The set stab−1([𝐻]) =

⋃

𝐻 ′∈[𝐻] stab
−1(𝐻 ′) is the union 

of all orbits of type [𝐻], all having length [𝐺 ∶ 𝐻] = |𝐺| ∕ |𝐻|. Thus 

|type(𝐴∕𝐺,𝐻)| = |stab−1([𝐻])| ∕ [𝐺 ∶ 𝐻] = |stab−1(𝐻)|×|[𝐻]|×|𝐻| ∕ |𝐺|.

(1)

In calculating the numbers |stab−1(𝐻)| we take a detour. The mapping 
f ix(𝐻) from the set of subgroups of 𝐺 into 𝐴 does not create a partition 
of 𝐴: if 𝐻1 is a proper subgroup of 𝐻2 (𝐻1 is a subgroup of 𝐻2 and 
𝐻1 ≠ 𝐻2), denoted by 𝐻1 < 𝐻2, then f ix(𝐻2) ⊂ f ix(𝐻1). The mappings 
f ix and stab are related 
stab−1(𝐻) = f ix(𝐻) ⧵

⋃

𝐻<𝐻 ′
stab−1(𝐻 ′), (2)

where 𝐻 ′ is also assumed to be a subgroup of 𝐺. Since the sets 
stab−1(𝐻) are disjoint, Eq. (2) implies 
|stab−1(𝐻)| = |f ix(𝐻)| −

∑

|stab−1(𝐻 ′)|. (3)

𝐻<𝐻 ′
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To calculate |stab−1(𝐻)| for all subgroups, we start with 𝐺, for which 
stab−1(𝐺) = f ix(𝐺) holds, the calculation of the subgroups can then be 
done successively.

In general, the numbers |𝐺| and |f ix(𝑔)| are not sufficient to deter-
mine the numbers |type(𝐴∕𝐺,𝐻)|. The following example describes two 
different group actions of the same group on the same set, so that the 
numbers |f ix(𝑔)| are the same, but the distribution of orbits by type 
is different. If a group 𝐺 acts on a set 𝐴, it induces a homomorphism 
𝜑 ∶ 𝐺 → 𝑆𝐴; 𝑔 ↦ (𝑎 ↦ 𝑔𝑎), where 𝑆𝐴 denotes the symmetric group of 
𝐴. We can therefore associate group elements of 𝐺 with permutations of 
the set 𝐴. Let 𝑉 = {1, 𝑎, 𝑏, 𝑐} the Klein four-group and 𝐴 = {1, 2,… , 6}. 
Consider the group actions 𝜓1 and 𝜓2, both mappings of 𝑉 ×𝐴 onto 𝐴, 
where 𝜓1 has the permutation representation
𝜎1 = (), 𝜎𝑎 = (12)(34), 𝜎𝑏 = (34)(56), 𝜎𝑐 = (12)(56);

and 𝜓2 is given by
𝜏1 = (), 𝜏𝑎 = (12)(34), 𝜏𝑏 = (13)(24), 𝜏𝑐 = (14)(23).

It is easily verified that these representations satisfy the group axioms 
and are isomorphic to 𝑉 . The first group action 𝜓1 partitions 𝐴 into the 
orbits {1, 2}, {3, 4}, and {5, 6}, the second group action 𝜓2 leads to the 
partition {1, 2, 3, 4}, {5}, and {6}. Note that |f ix(𝑎)| = |f ix(𝑏)| = |f ix(𝑐)| =
2 and |𝐴∕𝑉 | = 3 for both actions, while, for instance, type(𝐴∕𝑉 , 𝑉 ) = ∅
for the first action, but type(𝐴∕𝑉 , 𝑉 ) = {{5}, {6}} for the second one.

3.3. Symmetry operators acting on the domain of the local rules

The domain of a local rule is the set 𝛴𝑛 of all words over 𝛴 having 
length 𝑛. If 𝐻 is a subgroup of 𝑆𝑘𝑅, the mapping 𝐻 ×𝛴𝑛 → 𝛴𝑛 defined 
by (𝛼,𝑤) ↦ 𝛼𝑤 satisfies the properties of a group action.

We will now study mappings that are defined on an orbit of 𝛴𝑛∕𝐻 . 
Suppose 𝐴 ⊂ 𝛴𝑛 is an 𝐻-orbit, and 𝑔 is a mapping 𝐴 → 𝛴. If 𝛼 ∈ 𝐻
then 𝛼𝐴 = {𝛼𝑤|𝑤 ∈ 𝐴} = 𝐴. This shows that the domain of 𝛼̂𝑔 is also 
𝐴. Hence we can speak about functions defined on 𝐴 that are invariant 
under 𝐻 .

The set {𝐴1,… , 𝐴𝑝} of all 𝐻-orbits is a partition of 𝛴𝑛. If 𝑓 is a 
local rule invariant under 𝐻 , then the restriction 𝑓 |𝐴𝑖 is clearly also 
invariant under 𝐻 . On the other hand, if 𝑔𝑖 ∶ 𝐴𝑖 → 𝛴; 𝑖 = 1… , 𝑝, 
is a sequence of mappings, all invariant under 𝐻 , then the local rule 
defined by 𝑓 (𝑤) = 𝑔𝑖(𝑤) if 𝑤 ∈ 𝐴𝑖 is also invariant under 𝐻 . This shows 
that invariant functions defined on the orbits are the building blocks of 
invariant functions defined on 𝛴𝑛.

Let 𝐴 be again an 𝐻-orbit 𝐴 and suppose 𝑔 ∶ 𝐴 → 𝛴 is invariant 
under 𝐻 . Choose a word 𝑤 in 𝐴, and consider a different word in 
𝐴, say 𝑣. Since there is an 𝛼 ∈ 𝐻 such that 𝑣 = 𝛼𝑤, the relation 
𝑔(𝑣) = 𝛼̂𝑔(𝑣) = 𝛼𝑔(𝛼−1𝑣) = 𝛼𝑔(𝑤) holds, and the value of 𝑔(𝑣) is 
determined by 𝑔(𝑤). This implies that there are at most 𝑘 different 
mappings 𝑔 ∶ 𝐴→ 𝛴 that are invariant under 𝐻 .

3.4. Examples

We will study the group action of ⟨(01)𝑟⟩ on some of the orbits of 
two-state and three-state neighbourhoods.

1. Let 𝛴 = {0, 1}, and 𝑛 = 2𝑚 be a positive even integer. Suppose 
that the group ⟨(01)𝑟⟩ acts on 𝛴𝑛. Consider the word 𝑤 = 0𝑚1𝑚

(𝑚 copies of 0 followed by 𝑚 copies of 1). The group action of 
(01)𝑟 on 𝑤 results in
(01)𝑟𝑤 = (01)𝑟(0𝑚1𝑚) = (01)(1𝑚0𝑚) = 0𝑚1𝑚 = 𝑤;

and so the set 𝐴 = {𝑤} represents a singleton orbit. Assume there 
is a function 𝑓 from 𝐴 to 𝛴 that is invariant under ⟨(01)𝑟⟩. Then 
𝑓 has to satisfy the relation 𝑓 ((01)𝑟𝑤) = (01)𝑟𝑓 (𝑤). But since 
𝑓 ((01)𝑟𝑤) = 𝑓 (𝑤), we obtain the contradiction 𝑓 (𝑤) = (01)𝑓 (𝑤). 
This shows that there is no local rule on 𝛴𝑛 that is invariant 
under ⟨(01)𝑟⟩.



M. Schaller and K. Svozil Physics Open 24 (2025) 100298 
2. Let 𝛴 be as above, let 𝑛 = 2𝑚 + 1 be a positive odd integer, and 
let 𝑤 ∈ 𝛴𝑛. If we write 𝑤 = 𝑢𝑐𝑤, where 𝑢 and 𝑣 are words of 
length 𝑚 and 𝑐 is a symbol of 𝛴, we see that

(01)𝑟𝑤 = (01)𝑟(𝑢𝑐𝑣) = (01)(𝑟𝑣)𝑐(𝑟𝑢) = ((01)𝑟𝑣)((01)𝑐)((01)𝑟𝑢).

Since for all 𝑐 ∈ {0, 1}, 𝑐 ≠ (01)𝑐, we conclude that 𝑤 ≠ (01)𝑟𝑤, 
and that 𝐴 = {𝑤, (01)𝑟𝑤} is an orbit of length 2. Choose a symbol 
𝑎 from {0, 1} and set 𝑓 (𝑤) = 𝑎. If we set 𝑓 ((01)𝑟𝑤) = (01)𝑎, the 
function 𝑓 is invariant under ⟨(01)𝑟⟩. Since 𝑎 was arbitrary, there 
are two functions with domain 𝐴 that are invariant under ⟨(01)𝑟⟩.

3. Let 𝛴 = {0, 1, 2}, 𝑛 = 2𝑚 be a positive even integer, and 𝑤 =
0𝑚1𝑚. The singleton 𝐴 = {𝑤} is an orbit of ⟨(01)𝑟⟩. Assume that 
𝑓 is invariant on 𝐴. Then 𝑓 (𝑤) = (01)𝑓 (𝑤) must hold, which is 
satisfiable by the choice 𝑓 (𝑤) = 2. Hence there exists exactly one 
function from 𝐴 to 𝛴 that is invariant under ⟨(01)𝑟⟩.

4. Let 𝛴 be as above, but let 𝑛 = 2𝑚 + 1 be a positive odd integer. 
Consider a word 𝑤 of 𝛴𝑛 and write it in the form 𝑤 = 𝑢𝑐𝑣, 
where 𝑢 and 𝑣 are words of length 𝑚 and 𝑐 is a symbol. The 
relation 𝑤 = (01)𝑟𝑤 leads to the constraints 𝑣 = (01)𝑟𝑢 and 𝑐 = 2, 
satisfied by 3𝑚 words. If 𝑤 is one of these words, a function 𝑓
defined on the orbit {𝑤} that is invariant is constrained to the 
value 𝑓 (𝑤) = 2. All other orbits of 𝛴𝑛 have length 2 and allow 
for three different invariant functions.

3.5. The degree of an orbit

We have seen in Section 3.3 that the number of invariant functions 
on an orbit is at most the size of the state set 𝑘 = |𝛴|. The examples 
above have shown that the number of invariant functions might also be 
smaller than 𝑘. Let 𝐻 ≤ 𝑆𝑘𝑅 and 𝐴 be an orbit of 𝛴𝑛∕𝐻 . The degree 
of 𝐴 is defined to be the number of invariant functions on 𝐴, formally

deg(𝐴) = |{𝑓 ∶ 𝐴→ 𝛴 | 𝛼̂𝑓 = 𝑓 for all 𝛼 ∈ 𝐻}|.

The procedure for calculating the orbits of a CA which we will 
present shortly, requires to determine the degree of a given orbit. The 
following two lemmas will facilitate this task. The first lemma states 
that to determine the degree of an orbit, it is sufficient to consider all 
group actions on only one word of the orbit. The second lemma says 
that an orbit has degree 𝑘 if the length of the orbit equals the order of 
the group.

Lemma 6.  Let 𝐻 ≤ 𝑆𝑘𝑅, 𝐴 be an 𝐻-orbit, 𝑓 be a function from 𝐴 to 𝛴, 
and 𝑤 be any word of 𝐴. If 𝑓 (𝛼𝑤) = 𝛼𝑓 (𝑤) holds for all 𝛼 in 𝐻 , then 𝑓 is 
invariant under 𝐻 .

Proof.  By definition, 𝑓 is invariant under 𝐻 if 𝑓 (𝑤) = 𝛼𝑓 (𝛼−1𝑤) for all 
𝑤 ∈ 𝐴 and 𝛼 ∈ 𝐻 . If we replace 𝛼 by its inverse 𝛼−1, we see that the 
condition becomes equivalent to 𝑓 (𝑤) = 𝛼−1𝑓 (𝛼𝑤) or 𝑓 (𝛼𝑤) = 𝛼𝑓 (𝑤)
for all 𝑤 ∈ 𝐴 and 𝛼 ∈ 𝐻 .

Let 𝑣 ∈ 𝐴 and 𝛽 ∈ 𝐻 . Assuming that the condition of the lemma 
is fulfilled, we have to show that 𝑓 (𝛽𝑣) = 𝛽𝑓 (𝑣). The proof is almost 
trivial. Since 𝐴 is an 𝐻-orbit, there is a 𝛾 ∈ 𝐻 , such that 𝑣 = 𝛾𝑤. Then 
𝑓 (𝛽𝑣) = 𝑓 ((𝛽𝛾)𝑤) = (𝛽𝛾)𝑓 (𝑤) = 𝛽(𝛾𝑓 (𝑤)) = 𝛽𝑓 (𝛾𝑤) = 𝛽𝑓 (𝑣). □

Lemma 7.  Let 𝐻 ≤ 𝑆𝑘𝑅 and 𝐴 be an 𝐻-orbit. If |𝐴| = |𝐻|, then 
deg(𝐴) = 𝑘.

Proof.  Let 𝑤 be any word of 𝐴, and 𝑎 be any symbol of 𝛴. Define a 
function 𝑓 from 𝐴 to 𝛴 as follows. Set 𝑓 (𝑤) = 𝑎 and let 𝑣 be another 
word of 𝐴. Since |𝐴| = |𝐻| there is exactly one 𝛼 ∈ 𝐻 such that 𝑣 = 𝛼𝑤. 
This shows that the value 𝑓 (𝑣) = 𝛼𝑓 (𝑤) = 𝛼𝑎 is well defined. Lemma  6 
implies that 𝑓 is invariant under 𝐻 . □
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3.6. Outline of the complete calculation

Given a local rule space 𝐿(𝑘, 𝑛), the method to calculate the numbers 
|type(𝑘, 𝑛,𝐻)|, [𝐻] ∈ 𝒞 (𝑆𝑘𝑅) is as follows.

1. Construct the group 𝑆𝑘𝑅 that is the direct product of the permu-
tation group 𝑆𝑘 and the reflective group 𝑅 = {0, 𝑟}. Having done 
that, construct the sublattice of all subgroups of 𝑆𝑘𝑅.

2. For each conjugation class [𝐻] of 𝒞 (𝑆𝑘𝑅) choose one repre-
sentative 𝐻 ∈ [𝐻]. Determine the orbits of the group action 
𝐻 × 𝛴𝑛 → 𝛴𝑛 and their degree. Then
|f ix(𝐻)| =

∏

𝐴∈𝛴𝑛∕𝐻
deg(𝐴).

3. Beginning with 𝑆𝑘𝑅 calculate stab−1(𝐻) for all selected repre-
sentatives by using Eq.  (3):
|stab−1(𝐻)| = |f ix(𝐻)| −

∑

𝐻<𝐻 ′
|stab−1(𝐻 ′)|

4. The number of orbits of type [𝐻] is given by Eq.  (1):
|type(𝑘, 𝑛,𝐻)| = |stab−1(𝐻)| × |[𝐻]| × |𝐻| ∕ |𝐺|.

Sum up the numbers to obtain |𝐿(𝑘, 𝑛)∕𝑆𝑘𝑅|, the total number 
of orbits (or apply Burnside’s lemma).

3.7. Shift-equivalence

Another elementary equivalence relation was introduced in [19], 
which we first illustrate with an example in the domain of elementary 
CAs (𝑘 = 2, 𝑛 = 3), using Wolfram’s nomenclature to label the rules, 
see [11]. Set 𝛴 = {0, 1} and consider the elementary CAs 𝑓12 and 𝑓34, 
defined by

𝑓12(𝑤) =
{

1 if 𝑤 = 010 or 𝑤 = 011
0 otherwise and

𝑓34(𝑤) =
{

1 if 𝑤 = 001 or 𝑤 = 101
0 otherwise

Define a function ℎ ∶ 𝛴2 → 𝛴 by ℎ(01) = 1 and ℎ(𝑤) = 0 if 𝑤 ≠ 01. Then 
𝑓12(𝑎0𝑎1𝑎2) = ℎ(𝑎0𝑎1) and 𝑓34(𝑎0𝑎1𝑎2) = ℎ(𝑎1𝑎2) for all 𝑎0𝑎1𝑎2 ∈ 𝛴3. It is 
easy to see that 𝛷𝑓34 = 𝜎𝛷𝑓12 .

Two CAs (𝑘,𝑁1, 𝑓 ) and (𝑘,𝑁2, 𝑔) are said to be shift-equivalent if 
𝛷𝑁1
𝑓 = 𝜎𝑗𝛷𝑁2

𝑔  for some integer 𝑗, denoted by 𝛷𝑁1
𝑓

𝜎∼ 𝛷𝑁2
𝑔 . The relation 

𝜎∼ is an equivalence relation. A mapping 𝑝 ∶ 𝛴𝑛 → 𝛴𝑚, 𝑚 ≤ 𝑛, is called 
a projection if there are integers 𝑞0,… , 𝑞𝑚−1 such that 0 ≤ 𝑞0 < ⋯ <
𝑞𝑚−1 ≤ 𝑛 − 1 and 𝑝(𝑎0 … 𝑎𝑛−1) = 𝑎𝑞0 … 𝑎𝑞𝑚−1  for all 𝑎0 … 𝑎𝑛−1 ∈ 𝛴𝑛. The 
set {𝑞0,… , 𝑞𝑚−1} is called the index set of the projection. A local rule 
𝑓 ∶ 𝛴𝑛 → 𝛴 is called reducible if there exists a local rule ℎ ∶ 𝛴𝑚 → 𝛴
and a projection 𝑝 ∶ 𝛴𝑛 → 𝛴𝑚 with 𝑚 < 𝑛, such that 𝑓 = ℎ◦𝑝, otherwise 
𝑓 is said to be irreducible. Let 𝑁 = {𝑗0,… , 𝑗𝑛−1} be the neighbourhood 
of the CA. If 𝑓 is reducible, then there is a rule ℎ and a projection 𝑝
such that 𝑓 = ℎ◦𝑝, and the index set of 𝑝 is minimal. If {𝑞0,… , 𝑞𝑚−1} is 
this index set, the set 𝑀 = {𝑗𝑞0 ,… , 𝑗𝑞𝑚−1} ⊂ 𝑁 is called the support of 
𝑓 .

Suppose that 𝑓 is reducible with support 𝑀 , 𝑓 = ℎ◦𝑝, the index set 
of 𝑝 is {𝑞0,… , 𝑞𝑚−1}, and there is an integer 𝑡 such that 𝑀 ′ =𝑀+𝑡 ⊂ 𝑁 . 
Write 𝑀 ′ = {𝑗𝑞′0 ,… , 𝑗𝑞′𝑚−1}. Let 𝑝

′ be the projection 𝛴𝑛 → 𝛴𝑚 with index 
set {𝑞′0,… , 𝑞′𝑚−1} and define a local rule with the same neighbourhood 
𝑁 as 𝑓 by 𝑓 ′ = ℎ◦𝑝′. From
𝛷𝑓 ′ (𝑥)𝑖 = (ℎ◦𝑝′)(𝑥𝑖+𝑗0 … 𝑥𝑖+𝑗𝑛−1 ) = ℎ(𝑥𝑖+𝑗𝑞′0

… 𝑥𝑖+𝑗𝑞′𝑚−1
)

= ℎ(𝑥𝑖+𝑗𝑞0+𝑡… 𝑥𝑖+𝑗𝑞𝑚−1+𝑡)

= 𝜎𝑡ℎ(𝑥𝑖+𝑗𝑞0 … 𝑥𝑖+𝑗𝑞𝑚−1 ) = 𝜎𝑡(ℎ◦𝑝)(𝑥𝑖+𝑗0 … 𝑥𝑖+𝑗𝑛−1 ) =
(

𝜎𝑡𝛷𝑓 (𝑥)
)

𝑖

follows 𝛷𝑓 ′ = 𝜎𝑡𝛷𝑓 , so 𝑓 and 𝑓 ′ are shift-equivalent.
Let 𝑁1 and 𝑁2 be integer intervals. Suppose |𝑁1| = 𝑛, |𝑁2| = 𝑚, 

𝑚 ≤ 𝑛, 𝑓 ∈ 𝐿(𝑘, 𝑚), and 𝑓 is irreducible. Then there are 𝑛 − 𝑚 + 1 local 
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Fig. 1. The lattice of 𝑆2𝑅.

rules 𝑔𝑖 ∈ 𝐿(𝑘, 𝑛) such that 𝛷𝑁1
𝑓

𝜎∼ 𝛷𝑁2𝑔𝑖. The reflected rules 𝛷𝑁2
𝑟̂𝑔𝑖

 are all 
different, but shift-equivalent: 𝛷𝑁1

𝑟̂𝑓
𝜎∼ 𝛷𝑁2

𝑟̂𝑔𝑖
. If 𝑓 is reflection-symmetric, 

𝑟̂𝑓 = 𝑓 , then, if at all, only one of the 𝑔𝑖, is reflection-symmetric. Note 
also the general relation 𝑟̂𝛷𝑓

𝜎∼ 𝛷𝑟̂𝑓  from Section 2.2. There is the 
special case of |𝑁1| = 2, and |𝑁1| = 1. Let 𝑓 ∈ 𝐿(𝑘, 1), and consider the 
rules 𝑔0, 𝑔1 ∈ 𝐿(𝑘, 2), such that 𝑔0(𝑎0𝑎1) = 𝑓 (𝑎0) and 𝑔1(𝑎0𝑎1) = 𝑓 (𝑎1). 
Here, equivalence by reflection and by shift coincide: 𝑔1 = 𝑟̂𝑔0 and 
𝛷𝑔1

𝜎∼ 𝛷𝑔0 . This shows that the orbits of 𝐿(𝑘, 2)∕𝑆𝑘𝑅 remain unchanged 
if shift-equivalence is taken into account.

Let 𝑁1 = [−𝑟1, 𝑟1], and 𝑁2 = [−𝑟2, 𝑟2] with 𝑟2 < 𝑟1. If 𝑓 ∈ 𝐿(𝑘, 2𝑟2+1), 
𝑝(𝑎−𝑟1 … 𝑎𝑟1 ) = 𝑎−𝑟2 … 𝑎𝑟2 , and 𝑔 = 𝑓◦𝑝 ∈ 𝐿(𝑘, 2𝑟1 + 1), then 𝛷𝑔 = 𝛷𝑓 . 
In this case, 𝛷𝑟̂𝑔 = 𝛷𝑟̂𝑓  holds.

A local rule defined on a smaller neighbourhood might reappear in 
multiple copies that are shift-equivalent when considering larger neigh-
bourhoods. We conclude that shift-equivalence is another important 
elementary equivalence relation. However, it is of a different nature 
since it concerns only local rules that can be defined on a proper subset 
of the neighbourhood. The consideration of shift-equivalence into the 
presented framework, which is based on the group of permutations and 
reflection, goes beyond the scope of this study. Results for the number 
of equivalence classes, obtained with a computer program that also 
considered shift-equivalence, can be found in [19] for small families 
of CAs (𝑘 = 2, 𝑛 = 2, 3, 4 and 𝑘 = 3, 𝑛 = 2).

4. Two states

This section deals with the orbits of one-dimensional two-state CAs, 
that is 𝛴 = {0, 1}.

4.1. The group 𝑆2𝑅

𝑆2, the symmetric group of degree 2, contains as its elements the 
identity 1 and the transposition (01). The direct product 𝑆2𝑅 is given 
by

𝑆2𝑅 = ⟨(01)⟩⟨𝑟⟩ = {1, (01)}{1, 𝑟} = {1, (01), 𝑟, (01)𝑟} = ⟨(01), 𝑟⟩.

The notation ⟨𝛼, 𝛽,…⟩ is called a generator, and denotes the group with 
the property that every element of the group can be written as finite 
product of the elements of the generator and their inverses. Since 𝑆2
is abelian and 𝑟 commutes with 1 and (01), 𝑆2𝑅 is abelian too. It is 
isomorphic to the Klein four-group. The lattice of subgroups is depicted 
in Fig.  1.

4.2. Odd number of neighbours

Suppose the number of neighbours is odd, 𝑛 = 2 𝑚+1, 𝑚 = 0, 1, 2,…. 
For each subgroup 𝐻 of 𝑆2𝑅, we will calculate the number of orbits of 
𝐻 acting on 𝛴𝑛. For the next paragraphs 𝑤 denotes a word of 𝛴𝑛.
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1. The group ⟨1⟩. All orbits are of length 1, and so 𝛴𝑛 partitions 
into 22𝑚+1 singletons.

2. The group ⟨𝑟⟩. The relation 𝑤 = 𝑟𝑤 is satisfied if and only if the 
word 𝑤 is of the form 𝑢𝑎(𝑟𝑢) where |𝑢| = 𝑚 and 𝑎 is a symbol. 
This relation is fulfilled by 2𝑚+1 words. The set of these words 
divides into 2𝑚+1 orbits of length 1. The remaining 22𝑚+1 − 2𝑚+1

words of 𝛴𝑛 are all in orbits of length 2. The total number of 
orbits is therefore (22𝑚+1 − 2𝑚+1)∕2 + 2𝑚+1 = 2𝑚(2𝑚 + 1).

3. The group ⟨(01)⟩. Consider any word 𝑤 of 𝛴𝑛 and let 𝑎 denote 
the symbol in the centre of the word. Then (01)𝑎 is the symbol in 
the centre of the word (01)𝑤. This shows that the words 𝑤 and 
(01)𝑤 are always different. Hence 𝛴𝑛 partitions into 22𝑚 orbits 
of length 2.

4. The group ⟨(01)𝑟⟩. As before, the words 𝑤 and (01)𝑟𝑤 are always 
different. Hence the number of orbits is again 22𝑚.

5. The group 𝑆2𝑅. If 𝑤 = 𝑟𝑤 holds, then also 𝑟(01)𝑤 = (01)𝑤
holds. We have seen that there are 2𝑚+1 words satisfying the 
relation 𝑤 = 𝑟𝑤, and so there are 2𝑚 orbits of length 2 consisting 
of the words 𝑤 and (01)𝑤. The remaining 22𝑚+1 − 2𝑚+1 words 
divide into orbits of length 4. Thus the total number of orbits is 
(22𝑚+1 − 2𝑚+1)∕4 + 2𝑚 = 2𝑚−1(2𝑚 + 1).

All the orbits of the groups have degree 2. Put 𝐻1 = 𝑆2𝑅, 𝐻2 = ⟨(01)⟩, 
𝐻3 = ⟨(01)𝑟⟩, 𝐻4 = ⟨𝑟⟩ and 𝐻5 = ⟨1⟩. Set 𝑎𝑖 = |f ix(𝐻𝑖)|, 𝑏𝑖 = |stab−1(𝐻𝑖)|, 
and 𝑐𝑖 = |type(2, 𝑛,𝐻𝑖)|, for 𝑖 = 1,… , 5. If 𝑝𝑖 is the number of orbits (of 
degree 2) of the group 𝐻𝑖, then 𝑎𝑖 = 2𝑝𝑖 . We get
𝑏1 = 𝑎1 = 𝑐1;

𝑏2 = 𝑎2 − 𝑎1, 𝑐2 = 𝑏2∕2;

𝑏3 = 𝑎3 − 𝑎1, 𝑐3 = 𝑏3∕2;

𝑏4 = 𝑎4 − 𝑎1, 𝑐4 = 𝑏4∕2;

𝑏5 = 𝑎5 − 𝑎1 − 𝑏2 − 𝑏3 − 𝑏4 = 𝑎5 + 2𝑎1 − 𝑎2 − 𝑎3 − 𝑎4, 𝑐5 = 𝑏5∕4.

The total number of orbits is given by ∑𝑖 𝑐𝑖. Expressing the 𝑐𝑖’s by the 
𝑝𝑖’s leads to the following result.

Proposition 8.  Let 𝑚 be a nonnegative integer.
(i) The set of rules 𝐿(2, 2𝑚 + 1) partitions into 

1
4

(

2 × 222𝑚 + 22𝑚(2𝑚+1) + 222𝑚+1
)

 orbits.
(ii) The number of orbits of 𝐿(2, 2𝑚 + 1) by type are

|type(2, 2𝑚 + 1, 𝑆2𝑅)| = 22𝑚−1(2𝑚+1);

|type(2, 2𝑚 + 1, ⟨(01)⟩)| = 1
2

(

222𝑚 − 22𝑚−1(2𝑚+1)
)

;

|type(2, 2𝑚 + 1, ⟨(01)𝑟⟩)| = 1
2

(

222𝑚 − 22𝑚−1(2𝑚+1)
)

;

|type(2, 2𝑚 + 1, ⟨𝑟⟩)| = 1
2

(

22𝑚(2𝑚+1) − 22𝑚−1(2𝑚+1)
)

;

|type(2, 2𝑚 + 1, ⟨1⟩)| = 1
4

(

222𝑚+1 + 2 × 22𝑚−1(2𝑚+1)

−2 × 222𝑚 − 22𝑚(2𝑚+1)
)

.

Part (i) is a particular case of Proposition 21 in [8].

4.3. Even number of neighbours

Suppose the number of neighbours is even, 𝑛 = 2𝑚, 𝑚 = 1, 2,…. For 
the next paragraphs 𝑤 denotes a word of 𝛴𝑛. Example 1 has shown 
that there is no local rule invariant under ⟨(01)𝑟⟩, and by implication 
no local rule invariant under 𝑆2𝑅. Thus, in calculating the number of 
orbits, we therefore only have to consider the remaining subgroups.

1. The group ⟨1⟩. The set 𝛴𝑛 partitions into 22𝑚 orbits of length 1.
2. The group ⟨(01)⟩. The set 𝛴𝑛 partitions into 22𝑚−1 orbits of length 
2.

3. The group ⟨𝑟⟩. The set 𝛴𝑛 partitions into 2𝑚−1(2𝑚 + 1) orbits.
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Table 1
Count of two-state orbits by type.
 𝐻 |type(2, 𝑛,𝐻)|

 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

 ⟨(01), 𝑟⟩ 2 0 8 0 1024
 ⟨(01)𝑟⟩ 0 0 4 0 32256
 ⟨(01)⟩ 0 2 4 128 32256
 ⟨𝑟⟩ 1 4 28 512 523776
 ⟨1⟩ 0 1 44 16064 1073447424
 3 7 88 16704 1074036736

All the orbits of the three groups above are of degree 2. Put 𝐻1 = ⟨𝑟⟩, 
𝐻2 = ⟨(01)⟩, and 𝐻3 = ⟨1⟩. Set 𝑎𝑖 = |f ix(𝐻𝑖)|, 𝑏𝑖 = |stab−1(𝐻𝑖)|, and 
𝑐𝑖 = |type(2, 𝑛,𝐻𝑖)|, for 𝑖 = 1, 2, 3. If 𝑝𝑖 is the number of orbits (of degree 
2) of the group 𝐻𝑖, then 𝑎𝑖 = 2𝑝𝑖 . We get
𝑏1 = 𝑎1, 𝑐1 = 𝑏1∕2;

𝑏2 = 𝑎2, 𝑐2 = 𝑏2∕2;

𝑏3 = 𝑎3 − 𝑏1 − 𝑏2, 𝑐3 = 𝑏3∕4.

The total number of orbits is given by ∑𝑖 𝑐𝑖. Expressing the 𝑐𝑖’s by the 
𝑝𝑖’s leads to the following result. 

Proposition 9.  Let 𝑚 be a positive integer.
(i) The set 𝐿(2, 2 𝑚) of local rules partitions into

1
4

(

22𝑚−1(2𝑚+1) + 222𝑚−1 + 222𝑚
)

 orbits.
(ii) The number of orbits of 𝐿(2, 2 𝑚) by type are

|type(2, 2 𝑚, ⟨(01)⟩)| = 1
22

22𝑚−1 ;

|type(2, 2 𝑚, ⟨𝑟⟩)| = 1
22

2𝑚−1(2𝑚+1);

|type(2, 2 𝑚, ⟨1⟩)| = 1
4

(

222𝑚 − 222𝑚−1 − 22𝑚−1(2𝑚+1)
)

.

Table  1 depicts the number of orbits of two-state CAs for a neigh-
bourhood size 𝑛 = 1,… , 5. For each 𝑛 and each subgroup 𝐻 of 𝑆2𝑅
the table gives the number of orbits of stab−1(𝐻). The last row lists the 
total number of orbits for a given 𝑛.

5. Three states

After calculating the orbits of one-dimensional two-state CAs in 
Section 4 this section deals with one-dimensional three-state CAs, that 
is 𝛴 = {0, 1, 2}.

5.1. The group 𝑆3𝑅

The group 𝑆3𝑅, which is the direct product of the symmetric group 
𝑆3 and the reflection group 𝑅, contains all the symmetry operators of 
one-dimensional three-state CAs.

Some remarks:

1. 𝑆3 is not abelian, and neither is 𝑆3𝑅, for instance (01)(02) =
(021), but (02)(01) = (012).

2. The depiction of the lattice of subgroups, Fig.  2, arranges groups 
of equal order in the same row. From bottom to top the orders 
are 1, 2, 3, 4, 6, and 12.

3. The dashed rectangles demarcate conjugacy classes of
subgroups. The other subgroups are normal and form singleton 
classes with respect to conjugation. Collapsing the conjugacy 
classes into single nodes result in the reduced subgroup lattice.

4. Groups are specified by generators, e.g. 𝑆3 = ⟨(01), (12)⟩.
5. From [(012)𝑟]3 = 𝑟 follows ⟨(012)𝑟⟩ = ⟨(012), 𝑟⟩.
6. The group ⟨(01)𝑟, (012)⟩ consists of the elements 1, (01)𝑟, (12)𝑟,

(20)𝑟, (012), and (021).
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5.2. The orbits of the subgroups of 𝑆3𝑅 acting on 𝛴𝑛

The following lemma facilitates the calculation of orbits of sub-
groups that contain the permutation (012).

Lemma 10.  Suppose 𝐻 is a subgroup of 𝑆3𝑅 that contains the permutation 
(012), and suppose that 𝐴 is an orbit of 𝐻 acting on 𝛴𝑛. Then the number 
3 divides the length of 𝐴.

Proof.  There is no word in 𝛴𝑛 that is invariant under (012). This is 
equivalent to saying that for all words 𝑤 in 𝛴𝑛, the permutation (012)
is not an element of the subgroup stab(𝑤), and hence that the group 
⟨(012)⟩ is not a subgroup of stab(𝑤). Since (012) and (210) are the only 
elements of order 3 in 𝐻 , the subgroup stab(𝑤) is not divisible by 3. 
From |stab(𝑤)| |𝐴| = |𝐻| follows the proposition. □

The next simple lemma will help us in classifying orbits of degree 
1.

Lemma 11.  Suppose 𝐻 is a subgroup of 𝑆3𝑅 and 𝐴 is an orbit of 𝐻
acting on 𝛴𝑛. Then deg(𝐴) ≤ 1

(i) if (01) ∈ 𝐻 and there is a 𝑤 ∈ 𝐴 such that 𝑤 = (01)𝑤; or
(ii) if (01)𝑟 ∈ 𝐻 and there is a 𝑤 ∈ 𝐴 such that 𝑤 = (01)𝑟𝑤.

Proof.  Let 𝛼 be (01) or (01)𝑟 and suppose that 𝑓 is an invariant function 
from 𝐴 to 𝛴. Then the relation 𝑓 (𝑤) = 𝛼−1𝑓 (𝛼𝑤) = 𝛼𝑓 (𝑤) implies 
𝑓 (𝑤) = 2. □

All words below are understood to be words over 𝛴. The word 
𝑤 always denotes a word of 𝛴𝑛. Sometimes we will write 𝑤 as a 
concatenation of two words, that is 𝑤 = 𝑢𝑣, if 𝑛 = 2𝑚 is even, and 
as a concatenation of a word, a symbol, and a further word, that is 
𝑤 = 𝑢𝑎𝑣, if 𝑛 = 2𝑚+1 is odd. If we do so, we assume that |𝑢| = |𝑣| = 𝑚. 
For each subgroup 𝐻 of 𝑆3𝑅 the number of free orbits of 𝐻 acting on 
𝛴𝑛 is calculated as follows. In the calculations themselves we will make 
frequent use of Lemma  7 and Lemma  11, without explicitly referencing 
them.

1. The group ⟨1⟩. 𝛴𝑛 splits up into 3𝑛 orbits of length 1.
2. The group ⟨𝑟⟩. A calculation similar to the state set of size 2 
yields (32𝑚 + 3𝑚)∕2 orbits of degree 3 if 𝑛 = 2𝑚 is even, and 
(32𝑚+1 + 3𝑚+1)∕2 orbits of degree 3 if 𝑛 = 2𝑚 + 1 is odd.

3. The groups ⟨(01)⟩, ⟨(12)⟩, ⟨(20)⟩. We study ⟨(01)⟩. Only the word 
𝑤 = 2𝑛 (𝑛 copies of 2) satisfies the equation (01)𝑤 = 𝑤. Hence 
the orbit {2𝑛} is of degree 1. The remaining words split up into 
(3𝑛 − 1)∕2 orbits of length 2 and degree 3.

4. The groups ⟨(01)𝑟⟩, ⟨(12)𝑟⟩, ⟨(20)𝑟⟩. We study ⟨(01)𝑟⟩.
Suppose 𝑛 = 2𝑚 is even and 𝑤 = 𝑢𝑣. The relation 𝑢𝑣 = (01)𝑟(𝑢𝑣) =
((01)𝑟𝑣)((01)𝑟𝑢) implies 𝑣 = (01)𝑟𝑢 and so is satisfied by 3𝑚 words 
which form 3𝑚 orbits of length 1 and degree 1. The remaining 
words split up into (32𝑚 − 3𝑚)∕2 orbits of degree 3.
Suppose 𝑛 = 2𝑚 + 1 is odd and 𝑤 = 𝑢𝑎𝑣. The relation 𝑢𝑎𝑣 =
(01)𝑟(𝑢𝑎𝑣) = ((01)𝑟𝑣)((01)𝑎)((01)𝑟𝑢) implies 𝑣 = (01)𝑟𝑢 and 𝑎 = 2, 
which is satisfied by 3𝑚 words resulting in 3𝑚 orbits of length 1 
and degree 1. The remaining words split up into (32𝑚+1 − 3𝑚)∕2
orbits of degree 3.

5. The group ⟨(012)⟩. All orbits are of the form {𝑤, (012)𝑤, (210)𝑤}
with pairwise different elements. This shows that 𝛴𝑛 partitions 
into 3𝑛−1 orbits of degree 3.

6. The group 𝑆3 = ⟨(01), (12)⟩. The orbit {0𝑛, 1𝑛, 2𝑛} is of degree 1 
because (01)2𝑛 = 2𝑛. The remaining words split up into (3𝑛−1 −
1)∕2 orbits of length 6 and degree 3.

7. The groups ⟨(01), 𝑟⟩, ⟨(12), 𝑟⟩, ⟨(20), 𝑟⟩. We study ⟨(01), 𝑟⟩. Only 
the word 2𝑛 satisfies the relation 𝑤 = 𝑟𝑤 = (01)𝑤 = (01)𝑟𝑤. The 
corresponding orbit {2𝑛} is of degree 1.
Suppose 𝑛 = 2𝑚 is even. There are two ways that the orbit {𝑤, 
𝑟𝑤, (01)𝑤, (01)𝑟𝑤} can fold up into orbits of length 2.
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Fig. 2. The lattice of 𝑆3𝑅.
First, if 𝑤 = 𝑟𝑤 and 𝑤 ≠ (01)𝑤 holds. From the set of 3𝑚 words 
that satisfy 𝑤 = 𝑟𝑤 we remove 2𝑛. The remaining words in this 
set split up into (3𝑚 − 1)∕2 orbits of length 2 and degree 3.
Second, if 𝑟𝑤 = (01)𝑤 and 𝑟𝑤 ≠ 𝑤 holds. If 𝑤 = 𝑢𝑣 the relation 
𝑟𝑤 = (01)𝑤 implies 𝑣 = (01)𝑟𝑢. As above, we remove from the 
set of 3𝑚 words that satisfy this relation the word 2𝑛 to obtain 
(3𝑚 − 1)∕2 orbits of length 2 and degree 1.
The remaining 32𝑚−2(3𝑚−1)−1 words in 𝛴𝑛 split up into orbits 
of length 4 and degree 3. Summing up the orbits of degree 3, 
we obtain for their number (32𝑚 − 2(3𝑚 − 1) − 1)∕4 + (3𝑚 − 1)∕2 =
(32𝑚 − 1)∕4.
Suppose 𝑛 = 2𝑚 + 1 is odd. We consider again the two different 
types of orbits of length 2.
The first occurs, if 𝑤 = 𝑟𝑤 and 𝑤 ≠ (01)𝑤 holds. A similar 
calculation as above obtains (3𝑚+1 − 1)∕2 orbits of length 2 and 
degree 3.
The second occurs, if 𝑟𝑤 = (01)𝑤 and 𝑟𝑤 ≠ 𝑤. If 𝑤 is written 
as 𝑢𝑎𝑣, the relation becomes (𝑟𝑣)𝑎(𝑟𝑢) = ((01)𝑢)((01)𝑎)((01)𝑣), 
yielding the constraints 𝑣 = (01)𝑟𝑢 and 𝑎 = 2 which are satisfied 
by 3𝑚 words. Removing the word 2𝑛 from this set results in 
(3𝑚 − 1)∕2 orbits of length 2 and degree 1.
The remaining 32𝑚+1 −(3𝑚+1 −1)− (3𝑚 −1)−1 = (3𝑚+1 −1)(3𝑚 −1)
words in 𝛴𝑛 split up into free orbits of length 4. Hence the total 
number of orbits of degree 3 is (3𝑚+1−1)(3𝑚−1)∕4+(3𝑚+1−1)∕2 =
(3𝑚+1 − 1)(3𝑚 + 1)∕4.

8. The group ⟨(012)𝑟⟩. If 𝑤 = 𝑟𝑤, then {𝑤, (012)𝑤, (210)𝑤} is an orbit 
of length 3. If 𝑤 ≠ 𝑟𝑤, the orbit containing 𝑤 is of length 6. The 
calculation is similar to the one of the group ⟨𝑟⟩. If 𝑛 = 2𝑚 is 
even, 𝛴𝑛 partitions into (32𝑚−1 + 3𝑚−1)∕2 orbits of degree 3, if 
𝑛 = 2𝑚+1 is odd, 𝛴𝑛 partitions into (32𝑚+3𝑚)∕2 orbits of degree 
3.

9. The group ⟨(01)𝑟, (012)⟩. An orbit is of length 3 if and only if the 
orbit contains a word 𝑤 that satisfies the relation 𝑤 = (01)𝑟𝑤.
8 
Suppose 𝑛 = 2𝑚 is even and write 𝑤 = 𝑢𝑣. Then 𝑤 = (01)𝑟𝑤
holds if and only if 𝑣 = (01)𝑟𝑢 holds. Each of these 3𝑚 words is 
in a different orbit. This shows that there are 3𝑚 orbits of length 
3. All of them have degree 1. The remaining words split up into 
(32𝑚−1 − 3𝑚)∕2 orbits of length 6 and degree 3.
Suppose 𝑛 = 2𝑚 + 1 is odd and write 𝑤 = 𝑢𝑎𝑣. Then 𝑤 = (01)𝑟𝑤
holds if and only if 𝑣 = (01)𝑟𝑢 holds and 𝑎 = 2. Again, this shows 
that there are 3𝑚 orbits of length 3 and degree 1. The remaining 
words split up into (32𝑚 − 3𝑚)∕2 orbits of length 6 and degree 3.

10. The group 𝑆3𝑅.  The set {0𝑛, 1𝑛, 2𝑛} is the only orbit of length 3. 
The degree is 1. If 𝑛 = 1 it is the only orbit.
Suppose 𝑛 = 2𝑚 is even. By Lemma  10 the next possible length 
of an orbit is 6. If 𝑤 is a word in an orbit of length 6, either 
𝑤 = 𝑟𝑤 or 𝑤 = 𝛼𝑤, where 𝛼 denotes a transposition. There are 
3𝑚 words for which 𝑤 = 𝑟𝑤. If we subtract the 3 words of the 
orbit of length 3, we obtain 3(3𝑚−1 − 1) words that split up into 
(3𝑚−1−1)∕2 orbits of degree 3. There are also 3𝑚 words for which 
𝑤 = (01)𝑟𝑤, or 3×3𝑚 words for which 𝑤 = 𝛼𝑟𝑤, where 𝛼 denotes 
any of the three transpositions (01), (12), (20). If we subtract the 
3 words of the orbit of length 3, we obtain 3(3𝑚 − 1) words that 
split up into (3𝑚 − 1)∕2 orbits of degree 1.
The remaining words of 𝛴𝑛 partition into orbits of length 12. The 
number of remaining words is 32𝑚 − 3(3𝑚−1 − 1) − 3(3𝑚 − 1) − 3, 
splitting up into (3𝑚−1)(3𝑚−1−1)∕4 orbits of length 12 and degree 
3. The total number of orbits of degree 3 then is (3𝑚 − 1)(3𝑚−1 −
1)∕4 + (3𝑚−1 − 1)∕2 = (3𝑚 + 1)(3𝑚−1 − 1)∕4.
Suppose 𝑛 > 1 and 𝑛 = 2𝑚 + 1 is odd. There are 3𝑚+1 words 
that satisfy 𝑤 = 𝑟𝑤. Similar to the calculation above, we obtain 
3𝑚+1 − 3 words that split up into (3𝑚 − 1)∕2 orbits of degree 3. 
The relation 𝑢𝑐𝑣 = (01)𝑟(𝑢𝑐𝑣) implies 𝑣 = (01)𝑟 and 𝑐 = 2. As 
above, we see that 3𝑚+1 − 3 words satisfying 𝑤 = 𝛼𝑟𝑤 split up 
into (3𝑚 − 1)∕2 orbits of degree 1.
The remaining words of 𝛴𝑛 partition into orbits of length 12. 
The number of remaining words is 32𝑚+1 −6(3𝑚 −1)−3, splitting 
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Fig. 3. The orbits of 𝑆3𝑅 acting on {0, 1, 2}3.
up into (3𝑚 − 1)2∕4 orbits of length 12 and degree 3. The total 
number of orbits of degree 3 then is (3𝑚 − 1)2∕4 + (3𝑚 − 1)∕2 =
(32𝑚 − 1)∕4. Fig.  3 depicts the orbits of 𝛴3∕𝑆3𝑅. The graphs are 
informal, highlighting certain symmetries of the orbits.

5.3. Counting the orbits of 𝐿(3, 𝑛)∕𝑆3𝑅 by type

Too shorten the notation, we enumerate the representatives of the 
conjugation classes: 𝐻1 = 𝑆3𝑅, 𝐻2 = ⟨(01)𝑟, (012)⟩, 𝐻3 = ⟨(01), (12)⟩, 
𝐻4 = ⟨(012)𝑟⟩, 𝐻5 = ⟨(01), 𝑟⟩, 𝐻6 = ⟨(012)⟩, 𝐻7 = ⟨(01)𝑟⟩, 𝐻8 = ⟨(01)⟩, 
𝐻9 = ⟨𝑟⟩, and 𝐻10 = ⟨1⟩. We set 𝑎𝑖 = |f ix(𝐻𝑖)|, 𝑏𝑖 = |stab−1(𝐻𝑖)|, 
and 𝑐𝑖 = |type(3, 𝑛,𝐻𝑖)|. In the previous subsection we determined the 
degree of orbits for one representative 𝐻𝑖 of the conjugation classes 
[𝐻𝑖]. If 𝑝𝑖 is the number of orbits of 𝐻𝑖 of degree 3, then 𝑎𝑖 = 3𝑝𝑖 . We 
express now 𝑏𝑖 and 𝑐𝑖 in terms of 𝑎𝑖. Then
𝑏1 = 𝑎1 = 𝑐1;

𝑏2 = 𝑎2 − 𝑎1, 𝑐2 = 𝑏2∕2;

𝑏3 = 𝑎3 − 𝑎1, 𝑐3 = 𝑏3∕2;

𝑏4 = 𝑎4 − 𝑎1, 𝑐4 = 𝑏4∕2;

𝑏5 = 𝑎5 − 𝑎1, 𝑐5 = 3𝑏5∕3 = 𝑏5;

𝑏6 = 𝑎6 − 𝑎1 − 𝑏2 − 𝑏3 − 𝑏4 = 𝑎6 + 2𝑎1 − 𝑎2 − 𝑎3 − 𝑎4, 𝑐6 = 𝑏6∕4;

𝑏7 = 𝑎7 − 𝑎1 − 𝑏2 − 𝑏5 = 𝑎7 + 𝑎1 − 𝑎2 − 𝑎5, 𝑐7 = 3𝑏7∕6 = 𝑏7∕2;

𝑏8 = 𝑎8 − 𝑎1 − 𝑏3 − 𝑏5 = 𝑎8 + 𝑎1 − 𝑎3 − 𝑎5, 𝑐8 = 3𝑏8∕6 = 𝑏8∕2;

𝑏9 = 𝑎9 − 𝑎1 − 𝑏4 − 3𝑏5 = 𝑎9 + 3𝑎1 − 𝑎4 − 3𝑎5, 𝑐9 = 𝑏9∕6;

𝑏10 = 𝑎10 − 𝑎1 − 𝑏2 − 𝑏3 − 𝑏4 − 3𝑏5 − 𝑏6 − 3𝑏7 − 3𝑏8 − 𝑏9
= 𝑎10 − 6𝑎1 + 3𝑎2 + 3𝑎3 + 𝑎4 + 6𝑎5 − 𝑎6 − 3𝑎7 − 3𝑎8 − 𝑎9, 𝑐10 = 𝑏10∕12.

The equations for 𝑐5, 𝑐7, and 𝑐8 contain an additional factor 3 due 
to the size of the conjugation classes, see Eq.  (1) and Fig.  2. The total 
number of orbits is therefore 
10
∑

𝑖=1
𝑐𝑖 =

1
12

(

𝑎9 + 𝑎10
)

+ 1
6
(

𝑎4 + 𝑎6
)

+ 1
4
(

𝑎7 + 𝑎8
)

. (4)

Proposition 12.  Let 𝑚 be a nonnegative integer. The set 𝐿(3, 2𝑚 + 1) of 
local rules partitions into
1
12

(

3(3
2𝑚+1+3𝑚+1)∕2 + 33

2𝑚+1
)

+ 1
6

(

3(3
2𝑚+3𝑚)∕2 + 33

2𝑚
)

+ 1
4

(

3(3
2𝑚+1−3𝑚)∕2 + 3(3

2𝑚+1−1)∕2
)

orbits.
Let 𝑚 be a positive integer. The set 𝐿(3, 2 𝑚) of local rules partitions into

1
12

(

3(3
2𝑚+3𝑚)∕2 + 33

2𝑚
)

+ 1
6

(

3(3
2𝑚−1+3𝑚−1)∕2 + 33

2𝑚−1
)

+ 1
4

(

3(3
2𝑚−3𝑚)∕2 + 3(3

2𝑚−1)∕2
)

orbits.

The total number of orbits can be derived more simply from Burn-
side’s Lemma:
|𝐿(3, 𝑛)∕𝑆3𝑅| =

1
|𝑆 𝑅|

∑

|f ix(𝛼)| =

3 𝛼∈𝑆3𝑅

9 
Table 2
Count of three-state orbits by type.
 𝐻 |type(3, 1,𝐻)| |type(3, 2,𝐻)| |type(3, 3,𝐻)|

 ⟨(01), (12), 𝑟⟩ 1 1 9
 ⟨(01)𝑟, (012)⟩ 0 0 9
 ⟨(01), (12)⟩ 0 1 36
 ⟨(012)𝑟⟩ 1 4 360
 ⟨(01), 𝑟⟩ 2 8 6552
 ⟨(012)⟩ 0 4 4716
 ⟨(01)𝑟⟩ 0 9 262431
 ⟨(01)⟩ 0 35 793845
 ⟨𝑟⟩ 3 116 64566684
 ⟨1⟩ 0 1556 635433642324
 7 1734 635499276966

1
12

(|f ix(1)| + |f ix(𝑟)| + 3|f ix((01))| + 3|f ix((01)𝑟)|

+2|f ix((012))| + 2|f ix((012)𝑟)|) ,

where we have used the relation |f ix(𝛼)| = |f ix(𝛽𝛼𝛽−1)|. If we note that 
f ix(𝛼) = f ix(⟨𝛼⟩), we obtain Eq.  (4). Since the calculation depends only 
on the cyclic subgroups, Burnside’s lemma is preferable, if only the total 
number of orbits is required.

Table  2 lists the cardinalities of orbits by type, i.e. |type(3, 𝑛,𝐻)|, 
[𝐻] ∈ 𝒞 (𝑆3𝑅), for a neighbourhood size of one, two, and three. The last 
row gives the total number of orbits, that is |𝐿(3, 𝑛)∕𝑆3𝑅|. In contrast 
to two-state CAs, we have refrained from giving explicit formulas for 
𝑐𝑖 = |type(3, 𝑛,𝐻𝑖)| in the above proposition. These formulas become 
lengthy, but can be easily derived by expressing the 𝑐𝑖’s in terms of the 
𝑝𝑖’s above.

5.4. Constructing local rules that are invariant

The focus of this study so far has been on deriving formulas for the 
cardinalities of the orbits of CA rules by type as well as for their total 
number. We point out that an analogous method to the one described 
in Section 3.6 can be used to actually construct the local rules that 
are invariant. We will not treat this subject systematically, but give an 
example. Let 𝛴 = {0, 1, 2} and 𝑛 = 3. The orbits of 𝑆3𝑅 acting on 𝛴3

and their degrees were derived in Section 5.2 and depicted in Fig.  3. We 
have also seen that the degree of orbit 𝐴 and 𝐶 is 1 and the degree of 
orbit 𝐵 and 𝐷 is 3. According to Section 3.3, we form the set of local 
rules {𝑓} on 𝛴3 by considering the restriction of 𝑓 on the partitions 
𝐴,… , 𝐷, denoted by 𝑓𝐴,… , 𝑓𝐷. Since the degree of 𝐴 is 1, we need to 
determine the value of 𝑓𝐴 for a given word 𝑤, for instance 000. The 
relation (12)𝑓𝐴(000) = 𝑓𝐴((12)000) = 𝑓𝐴(000) implies 𝑓𝐴(000) = 0. The 
other values follow from 𝑓𝐴(𝛼000) = 𝛼𝑓𝐴(000) = 𝛼0, 𝛼 ∈ 𝑆3𝑅. Similarly, 
(02)𝑟𝑓𝐶 (012) = 𝑓𝐶 ((02)𝑟012) = 𝑓𝐶 (012) implies 𝑓𝐶 (012) = 1, the other 
values follow as above. Thus there is only one function 𝑓𝐴 on 𝐴 and 
only one function 𝑓𝐶 on 𝐶 invariant under 𝑆3𝑅:

𝑓𝐴 =

(

000 111 222
0 1 2

)

, 𝑓𝐶 =

(

012 210 201 102 120 021
1 1 0 0 2 2

)

.

The orbit 𝐵 is of degree 3, so we can pick a word in 𝐵, say 010, define 
𝑓 (010) = 𝑎 with 𝑎 ∈ 𝛴 arbitrary, and derive the other function values 
𝐵
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𝑓𝐷 =
(

001 100 011 110 112 211 002 200 022 220 122 221
𝑏 𝑏 (01)𝑏 (01)𝑏 (012)𝑏 (012)𝑏 (12)𝑏 (12)𝑏 (021)𝑏 (021)𝑏 (02)𝑏 (02)𝑏

)

.

Box I. 
Table 3
Python 3 program that calculates the number of orbits.

import itertools as it
k = 3; n = 2                    # number of states; neighbourhood size
s = tuple(range(k))             # state set (0,1,..,k-1)
def enc(w) :                    # encodes a word
    v = 0
    for a in w : v = k*v+a
    return v                    # returns  w[0]*k^(n-1)+..+w[n-1]
rfl_pairs = [(enc(w),enc(w[::-1])) for w in it.product(s, repeat=n)
    if w != w[::-1]]            # pairs (i,j), w_j = rw_i != w_i
def reflectRule(f) :            # returns reflected rule
    g = list(f)                 # copy f
    for (i,j) in rfl_pairs : g[i] = f[j]
    return tuple(g)
def permutateRule(f, perm) :    # returns permutated rule
    g = [0] * k**n
    for w in it.product(s, repeat=n) :
        g[enc([perm[a] for a in w])] = perm[f[enc(w)]]
    return tuple(g)
def orbit(f) :                  # returns the orbit of f
    orb = set()
    for perm in it.permutations(s) :
        pf = permutateRule(f,perm)
        orb.update({pf, reflectRule(pf)})
    return tuple(orb)
def countOrbits() :             # counts all orbits
    processed = set()           # keep track of processed rules
    count = 0
    for f in it.product(s,repeat=k**n) :
        if f not in processed :
            count += 1
            processed.update(orbit(f))
    return count
print(countOrbits())            # prints number of orbits
as above. So

𝑓𝐵 =
(

010 101 121 212 020 202
𝑎 (01)𝑎 (012)𝑎 (02)𝑎 (12)𝑎 (021)𝑎

)

.

We proceed with orbit 𝐷 in the same way and set 𝑓𝐷(001) = 𝑏, 𝑏 ∈
𝛴, see the unnumbered equation given in Box  I. We set 𝑓 (𝑤) = 𝑓𝑋 (𝑤)
if 𝑤 ∈ 𝑋. Since 𝑎 and 𝑏 were arbitrary symbols of 𝛴, there are 9 orbits 
of length 1 of type 𝑆3𝑅, in accordance with the entry |type(3, 3, 𝑆3𝑅)|
in Table  2.

6. Validation

In the previous sections the exact numbers of orbits for
one-dimensional two-state and three-state CAs were calculated. This 
section takes another approach and describes an algorithmic brute-
force approach to determine these numbers for small 𝑘 and 𝑛. The 
algorithm is implemented in Python 3 and depicted in Table  3.

We start with some general considerations applicable to any pro-
gramming language that supports arrays (referred to as sequences in 
Python). The state set 𝛴 = {0, 1,… , 𝑘 − 1} is ordered, and so is the 
set 𝛴𝑛 if we adopt the lexicographical order. We write the set 𝛴𝑛 as 
an increasing sequence (𝑤𝑖

)

; 0 ≤ 𝑖 < 𝑘𝑛. This arrangement allows for 
the representation of a local rule 𝑓 by the sequence (𝑏𝑖), 0 ≤ 𝑖 < 𝑘𝑛, 
where 𝑏𝑖 = 𝑓 (𝑤𝑖). We define an encoding function, denoted by enc, 
which maps a word to an integer. The function returns the index 𝑖 of the 
10 
word 𝑤 within the sequence (𝑤𝑖) such that 𝑤 = 𝑤𝑖, or equivalently, the 
numerical value when 𝑤 is read as a number in base 𝑘: if 𝑤 = 𝑎𝑛−1 … 𝑎0, 
then enc(𝑤) = 𝑎𝑛−1𝑘𝑛−1 + ⋯ + 𝑎0. Given a local rule 𝑓 represented by 
the sequence 𝑏 = (𝑏𝑖) and a word 𝑤, to find 𝑓 (𝑤) compute 𝑗 = enc(𝑤), 
and then access the 𝑗th element in the sequence 𝑏: 𝑓 (𝑤) = 𝑏𝑗 .

The program listed in Table  3 implements local rules and words 
as sequences. The symmetry operators are implemented in a manner 
closely aligned with their theoretical definitions.

We first discuss the reflection operator. The variable rfl_pairs
refers to a sequence of integer pairs (𝑖, 𝑗) satisfying the relations 𝑤𝑗 =
𝑟𝑤𝑖 and 𝑤𝑖 ≠ 𝑟𝑤𝑖 (w[::-1] is a Python idiom used to reverse 
a sequence). The function reflectRule takes a sequence f that 
represents a rule, and returns its reflected version g. Initially, the rule 
provided as argument is copied into the variable g. Then, a for loop 
iterates over refl_pairs, modifying the values of g accordingly to 
the pairs of reflectRule.

We now shift focus to the implementation of the permutation op-
erator. Permutations of the state set are represented as sequences of 
length k. The function permutateRule accepts a local rule f and a 
permutation perm, and returns the permutated rule g. It begins with 
initializing the variable g with a sequence of length 𝑘𝑛. A for loop then 
iterates all words in the domain, and for each word w, g is changed, 
according to the equation 𝑔(𝜎(𝑎0 … 𝑎𝑛−1)) = 𝑔

(

(𝜎𝑎0)… (𝜎𝑎𝑛−1)
)

=
𝜎𝑓 (𝑎 … 𝑎 ).
0 𝑛
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The function orbit determines the orbit of the input function f. 
It iterates all permutations of 𝛴, and adds the permutated rule and the 
permutated and reflected rule to the orbit. If 𝑓 is invariant under a 
certain operation then 𝑓 will not be changed. Since the underlying data 
structure of the equivalence class is a set, subsequent additions of the 
same element have no effect.

Lastly countOrbits iterates the set of local rules:
it.product(s,repeat=k**n) creates the cartesian product of 𝛴
with itself, 𝑘𝑛 times, representing the set of local rules. If a rule belongs 
to an orbit of an already processed rule, the body of the for loop is 
skipped. Otherwise a new orbit is created, the counter is incremented, 
and the members of the class are stored in a set referenced by the 
variable processed.

On a typical PC, the program prints the result within a few seconds 
for the input parameters 𝑘 = 2 and 𝑛 ≤ 4 as well as for 𝑘 = 3 and 
𝑛 ≤ 2. With an optimized implementation and improved hardware, it 
might be possible to achieve results for a few additional combinations, 
such as 𝑘 = 2, and 𝑛 = 5. However, the algorithm’s runtime complexity 
prevents calculations for larger input parameters.

The presented implementation is minimalistic. We briefly explore 
two kinds of improvements.

1. By incorporating minor changes, more detailed insights about 
the orbits can be obtained. As an example, adding a hashtable 
to the function body of countEquiClasses allows tracking 
the number of equivalence classes based on their size.

2. Although traversing the entire domain might be unfeasible, ex-
ploring only parts of it might still be instructive. For instance, if 
the main loop is adjusted to iterate only the set f ix(⟨(012)⟩), it is 
feasible to obtain the results for the upper lattice of 𝑆3𝑅, which 
consists of groups that encompass the group ⟨(012)⟩.

7. Summary

This work investigates the classification of one-dimensional cellular 
automata (CAs) into orbits (also called equivalence classes) using a 
group-theoretical approach. A cellular automaton operates on a bi-
infinite lattice of cells, each existing in one of a finite number of 
states, and evolves according to local rules that depend on a fixed-size 
neighbourhood of cells.

The study defines equivalence through transformations such as 
reflection, permutation of states, and their combinations. The key 
contributions include:

• Formalizing orbits by systematically incorporating symmetry op-
erations, including reflection and state permutations, to identify 
and group equivalent rules within the set of local rules;

• Deriving orbits for two-state and three-state cellular automata 
with arbitrary neighbourhood, which generalizes previous results 
and corroborates existing findings, such as the well-established 88 
equivalence classes for elementary cellular automata (two states, 
three neighbours);

• Exploring group actions and symmetries acting on the set of local 
rules, developing a comprehensive methodological framework for 
calculating orbits of the set of local rules across varying numbers 
of states and neighbourhood sizes;

• Classifying orbits by their isomorphism type with respect to the 
symmetry operations and giving results for the number of orbits 
per type;

• Implementing an algorithmic validation through a brute-force 
approach in Python, empirically verifying the theoretical results 
for families of CAs with a small set of local rules.

The study concludes by highlighting the significance of symmetry-
based classification in substantially reducing the number of unique CA 
rules. This approach provides a rigorous foundation for future investi-
gations into cellular automata dynamics and computational properties, 
11 
potentially opening new avenues for understanding discrete complex 
systems and computational mechanisms.
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