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Using a group-theoretic approach, a method for determining the equivalence classes (also called orbits) of
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permutation and their product is presented. Orbits are classified by their isomorphism type. Results for the
number of orbits and the number of orbits by type for state sets of size two and three are included.

1. Introduction
1.1. The physical relevance of cellular automata

Cellular Automata (CAs) are mathematical constructs that model
systems composed of discrete components evolving over time according
to simple local rules. Despite their simplicity, CAs exhibit remarkable
phenomenological complexity, making them powerful tools for study-
ing a wide range of natural and computational phenomena. Beyond
their abstract utility, CAs hold profound potential physical relevance
as models for discrete universes and simulations, offering insights into
the fundamental principles underlying locally governed (though not
necessarily spatially localized) universes and the dynamics of com-
plex systems. Their capacity for Church-Turing universal computation,
including the self-reproduction of universal devices within their frame-
work, provides metaphors that may extend to continuous physical
models.

Historically, Konrad Zuse, in his seminal work Rechnender Raum
(Calculating Space) [1-3], proposed the bold hypothesis that the uni-
verse itself could be interpreted as a vast computational structure
evolving through local updates. Zuse’s digital physics posits that space,
time, and matter are inherently discrete, with their evolution governed
by computational rules analogous to those of CAs. This perspective sug-
gests that physical laws are emergent properties of an underlying com-
putational substrate, where local interactions among discrete elements
produce global patterns. In this context, CAs serve as ideal candidates
for modelling a digital universe, offering a conceptual framework for
exploring the computational essence of reality.
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Independently, John von Neumann, utilizing their algorithmic and
computational aspects, provided another profound perspective on the
significance of CAs, emphasizing their universality and self-replication
capabilities [4]. Motivated by questions of biological self-reproduction
and universal computation, von Neumann designed a CA capable of
replicating itself. This achievement demonstrated that even within a
simple, rule-based system, it is possible to encode the complexity of
life-like processes and achieve computational universality. Von Neu-
mann’s work laid the foundation for studying self-reproducing systems,
influencing fields ranging from artificial life to nanotechnology, and
underscoring the potential of CAs to model the interplay between
computation and dynamics.

CAs have also found extensive applications as models of dynamical
systems. Their discrete, rule-driven structure makes them particularly
suited for simulating phenomena where local interactions give rise to
emergent behaviour, such as fluid dynamics, traffic flow, biological
growth, and even aspects of quantum mechanics. Unlike continuum-
based models requiring analysis, CAs inherently capture the often
granular, stepwise nature of many physical processes.

In sum, CAs embody a profound duality, functioning both as ab-
stract computational models and as physically relevant systems. From
Zuse’s vision of a computational universe to von Neumann’s pioneer-
ing work on self-reproduction, CAs have reshaped our understanding
of computation, biology, and the dynamics of physical systems. This
interplay between simplicity and complexity places CAs at the heart of
efforts to unify computational theory with the physical world.
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Their characterization in terms of equivalence through transfor-
mations such as reflection, state permutation, and their combinations
represents a critical step toward understanding their potential. This
study is motivated by such physical motivations.

1.2. Outline and previous work

A one-dimensional CA operates on a bi-infinite lattice of cells where
each cell is in one state from a finite set of possible states. A compu-
tational step of the automaton comprises the following operations. For
each cell the automaton reads the states of a small set of neighbouring
cells including the cell itself. The values of the states read are used
as input of a lookup table, called the local rule, that determines the
new state of the cell. Then all cells are updated synchronously. The net
effect of one computational step is the calculation of a new bi-infinite
sequence of states.

Multiple iterative computational steps of the CA leads to a sequence
of configurations, termed the evolution of the CA. If each configuration
of a CA’s evolution is shifted the same number of cells to the left or to
the right, the CA’s evolution is still governed by the same local rule.
This fundamental property of CA is called shift invariance.

Other symmetry operations transform the local rule. If the CA’s
evolution is reflected (or mirrored), the resulting evolution is governed
by the reflected rule, which, in general, is different, to the unmirrored
one. Reflection is thus a symmetry operation that transforms rules.

Similarly, since the states of a CA are merely labels, permutating
the labels does not change the dynamic behaviour of the CA, but will
in general result in a different local rule. Rules that can be transformed
into each other under reflection or permutation or their product are
considered equivalent. Consequently, the set of all CA rules splits up
into classes of equivalent rules.

Wolfram [5] designated the family of one-dimensional CAs with
two states and three neighbours as elementary. In [6], pp. 485-557,
he gave a table that divided the 256 rules of the elementary CA into
88 equivalence classes with respect to the symmetry operations of
reflecting the lattice, permutation of the state set, and the product of
these operations. A mathematical derivation of this result was carried
out by Li and Packard [7]. Cattaneo et al. [8] studied a variety of
transformations of the set of local rules, in particular, also the symmetry
operations of two-state CAs to be discussed in this work. They gave,
inter alias, the general result for the equivalence classes of two-state
CAs with 2r + 1 neighbours, where r is a nonnegative integer. The
properties of symmetry transformations acting on CA rules have also
been investigated, see e.g., [9]. Symmetry transformations were even
extended to generalized CAs over groups, see [10].

Determining the equivalence classes is an elementary classification
and serves both to understand the set of local rules in terms of symme-
try operations and to reduce the number of non-equivalent rules. There
are a variety of other classification schemes. For instance, Wolfram’s
classification [11] is based on the phenomenological behaviour of
the dynamic evolution, the Culik-Yu classification [12] captures the
computational complexity of the limit sets; see [13] for an overview.
The classification by symmetry operations precedes these higher-level
classifications as rules in an equivalence class are all in the same class
of other classification schemes (at least they should be).

This study focuses on the equivalence classes of one-dimensional
CAs induced by the symmetry transformations of reflection and permu-
tation and their product. The set of symmetry transformations forms a
group which acts on the set of CA rules. Therefore group-theoretical
concepts are applied to determine the equivalence classes of CAs.
In group-theoretical notation, equivalence classes induced by group
actions are called orbits, and this term is used in the following. One
of the main results of this study is the provision of formulas that give
the number of orbits for a state set of size two and three for any size
of the neighbourhood. This study goes beyond the scope of previous
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work by classifying the orbits according to their isomorphism type and
deriving the cardinalities of these classes.

The organization of this study is as follows. Section 2 provides def-
initions on CAs and symmetry operators. Section 3 presents a method
based on group actions to determine the number of orbits. Sections 4
and 5 contains the calculations for a state set of size two and size three
respectively. Section 6 presents a brute-force algorithm that can be
used to validate the results for small numbers of states and neighbours.
Conclusion remarks are made in Section 7.

2. Definitions
2.1. One-dimensional cellular automata

The states of a CA are represented by symbols from a finite set, also
called an alphabet. As the symbols only serve to designate the states,
any finite set will do, so we choose the set ¥ = {0,1,...,k — 1} to
represent a state set of size k. The size (or cardinality) of an arbitrary
set A is denoted by |A|.

A word w = xyx, ...x,_; over an alphabet X is a finite sequence
of symbols from X juxtaposed. The length of a word w, denoted |w]|,
is the length of the sequence, that is |x(x; ... x,_;| = m (the notation
|.| denotes both the size of a set and the length of a word). The set
of all words of length m over the alphabet X is denoted by X". A
configuration x is a bi-infinite sequence over the alphabet X, defined
as a mapping of Z into X. The ith element, i € Z, of a configuration x
is denoted by x;.

Definition 1.

A one-dimensional CA is a triple (k, N, f), where

k > 2 is an integer, the number of states in the state set ¥ =
(0,1,... . k—1};

N is the neighbourhood, a finite nonempty set of integers such that
—N = N +d for an integer d;

f is the local rule, a function from X" to X.

Let n = |[N| and N = {jy.jj,---.Jn—;} such that j, < j; <

< Jju_1- The local mapping f induces the global mapping on
the set of configurations <D’f\' 3Z — 37 defined by <D;’ (x); =
f(xiﬂ'oxiﬂ'l xiﬂ'n—l)'

We have used the notation —-N = {—j | j € N} and N +d =
{j+d|j e N}LIf N is given, we will write &, instead of ®V.
Definition 1 is similar to the one used in [14,15] or [16], apart that
we always use the first nonnegative integers as state set and more
important that we introduce the constraint —N = N +d to later define
the reflection operator in a meaningful way. If the CA is initialized
with the configuration x, the CA computes in one step the configuration
D, (x).

The shift operator ¢ operates on the set of configurations, it shifts a
configuration one cell to the left, formally defined by o(x); = x;,;. By
the definition of the CA, the global mapping commutes with the shift
operator: @ (o(x)) = o(®;(x)). A fundamental result of Hedlund [17]
shows that an alternative, topological definition of an one-dimensional
CA based on the shift operator and continuous mappings is equivalent
to the one above. We contrast Definition 1 with another definition
that is frequently found in literature, e.g. [18] or [11]. If p and ¢ are
integers, let [p, q] denote the integer interval {p,p+1,...,q}.

Definition 2. A radius-based CA isa CA (k, N, f) such that N = [-r,r],
where r is a nonnegative integer, called the radius of the CA.

The local mapping f induces the global mapping @ ,(x),
= f(X;_pX;_p41 --- X;3,). Definition 2 encompasses only CAs with an
odd (2r + 1) number of neighbours. The generalization to an even
number of neighbours becomes cumbersome, e.g. by shifting the output
configuration a half cell and introducing half-integers to index the
configuration, see Kari [16], or by loss of symmetry, see Ruivo [19],
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while Definition 1 enables a uniform treatment of all neighbourhood
sizes.

If k = ||, then the set L(k,n) = {f|f : 2" — X} is called the
local rule space of the family of CAs with k states and » neighbours.
The size of L(k,n) is k¥". If k > 1, |L(k,n)| grows extremely fast as
function of n: |L(k,0)] = k, and |L(k,n+1)] = |L(k,n)|*. The set
G(k,N) = {®@/|f € L(k,|N])} is called the global rule space of the
family of CAs with k states and neighbourhood N.

Proposition 3. If G(k;, N|) = G(k,, N,), then k| = k, and N| = N,.

Proof. If k; # k,, then clearly G(k,, N|) # G(k,, N,). Suppose now that
ky = ko, and N; # N,. Then N, \ N, U N, \ N, is not empty. Without
loss of generality, suppose N| = {jo.....j,—1} and j, € Ny \ N,. Define
alocal rule f by f(ag...a,_;) =1 onlyifa,=1and g; = 0 for i # p, and
a configuration x by x;, =1 and x; = 0 if i # j,. Then d)JfV‘ (x); is 1 if
i =0 and O otherwise. Let g € L(k,n) be arbitrary. If cl)évz (x)o = 0 then
d)}v' # <D£'2. 1If (Dgz(x)o = 1, we conclude that g(0...0) = 1 and ¢gz(x)
contains infinitely many 1’s, so also dSIfVl # dii,vz. Thus, we have shown
that cblfv ' ¢ G(k,N,)). [

Note the following two cases. First, if N, = N, + ¢ for an integer
g, then G(k, N|) = {c®,|®, € G(k, N,)}. Second, if N, C N, then
Gk, N,) € G(k, N,).

2.2. Symmetry operations

The notion of the equivalence of one-dimensional CAs is based on
two classes of symmetry operations: permutations of the state set and
reflection of the configuration.

Let S, be the symmetric group of degree k, that is the set of all
permutations of the set ¥ = {0,1,...,k — 1}, and suppose a € S}. If
a € X we write the image of a under « as product aa. The extension of
a to words and configurations is defined by elementwise application.
If w=ay...a,., € 2" is a word, set aw = (aqy)...(aa,_;). If x is a
configuration, set (ax); = a(x;). Suppose f is a local rule that maps ="
to X. The permutation operator & is defined by &f(w) = af(a”'w) for
all words w € X". It represents a transformation of the set of local
rules. Note that the “hat” on the operator is necessary, because «f
and af are distinct entities. The first one is the composite function
aof, whereas the second represents the composite function aofoa~!.
If @, is the induced global mapping of f, we define ¢®, similarly:
ad 4 (x) = a®@ f(aflx) for all configurations x. From

(a0,(x)), = (a®,(a'x)), =af (oz_l(x,,rj0 ...x,-+jn_])>

f Xy jy - Xigj,_ ) = Pap(X);

follows ¢®, = @, .

The second type of operator is the reflection operator. If w =
ay...a,_; € X" is a word over X, define rw = a,_; ... a,. Note that
ra = aforall a € X. If x is a configuration, set (rx); = x_;. The reflection
operator 7 is defined by 7f(w) = f(rw) and 7@ ((x) = r® ;(rx). Since r is
self-inverse, that is ¥~! = r, we can also write 7 f(w) = rf(r~'w), making
the notation consistent with the one of the permutation operator.

From

(0 (0), = (@), = (@020)_, = F ()10 001, )
=f (xi—jo -"xi—jn,1> =f (xi+jn,1+d Xi+jo+d)
=f (r(xi+j0+d ~~~xi+j,,,1+d)) =rf (xi+j0+d xi+jn,1+d)
= (D (), 4

we conclude that 7, = ¢®;,. If the CA complies with Definition 2
the relation simplifies to 7@, = @, .

We call R = {I1,r}, the reflection group. The direct product of S,
and R, written as S R, is the group that contains all permutations, the
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reflection and their products. Suppose that & and § are two operators.
Then

&pf(w) = affa w)=apf(F o w) = apf(w).

The operators form a group that is in general isomorphic to S, R, but
for n = 1 (or k = 1) the relation is only a homomorphism. Note that
the reflection operator commutes with all permutation operators. If the
global mapping @, satisfies @, = @@, the CA is said to be invariant
under the operator a.

The meaning of the operators defined above is illustrated by the
following observation. Suppose & is either one of the permutation
operators or the reflection operator, and consider two radius-based CAs
(Definition 2) with the same state set and the same radius and respec-
tively, with local rule f and local rule @ f. If the initial configuration of
CA A is x and the one of CA B is ax, then the same 1-1 correspondence
between the configurations established by « persists for all iterations:
acb’f(x) = di’& (ax) holds for any positive integer ¢ (@' denotes the
tth iteration of @). Suppose now that the CAs are of the general form
of Definition 1. The same relation holds, if « is a permutation, but if
a = r, it changes. Then CA A is after one step in configuration D 4(x),
and CA B in configuration @;,(rx). Using /@, = '@, 7> We obtain
fo(rx) = o_dftbf(rx) = G‘dr¢f(x), s0 r®,(x) = Ud@;f(rx). For any
number ¢ of steps, the relation becomes rtb’f(x) =¢? ’<D; f(rx).

3. Preliminaries
3.1. Groups and group actions

We assume some basic knowledge of groups as it can be found
in introductory textbooks, e.g. [20,21], or [22]. However, we briefly
introduce the notation that is used in the following, define group
actions and related concepts and state some propositions about them,
all of these to be found in more depth and more relaxed pace in the
references above.

Let H be a subgroup of G, denoted by H < G. If g € G, the left coset
of H in G is defined by gH = {gh | h € H}. The index [G : H] of H
in G denotes the number of left cosets of H in G. Lagrange’s theorem
states that |G| = [G : H]x|H|. If g € G, the conjugate of H by g is the
set gHg™' = {ghg~! | h € H}, which is also a subgroup isomorphic to
H. A subgroup N of G is called normal if gNg=' = N for all g € G.

A group action of a group G on a set A is a map from G X A to A
satisfying the following properties:

(i) g,(ga) =(g,8y)a for all g;,g, € G, a € A, and
(ii) la = a, for all a € A.

The relation on A, defined by a ~ b if and only if a = gb for some g €
G, is an equivalence relation. The equivalence classes [a] = {ga | g € G}
are called G-orbits (or just orbits), and the set of orbits forms a partition
of A, denoted by A/G. The length of an orbit [a] is its size |[a]|. An
element a € A is fixed by g € G if ga = a. The set of all group members
that fix an element a € A is called the stabilizer of g, that is the set
stab(a) = {g € G| ga = a}, which forms a subgroup of G. If g € G, the
set of all fixed points of g is denoted by fix(g) = {a € A|ga = g}.
The notation is generalized to subgroups. If H < G, then the set
fix(H) = {a € A|lga=aforallge H} = ﬂgeﬁ fix(g), consists of all
elements of A that are fixed points for all g € H.

Proposition 4 (Orbit-Stabilizer Theorem). If the group G acts on A and
a € A, then the length of the G-orbit which contains a is equal to the index
of the stabilizer of a in G:

[[a]l = [G : stab(a)].

Proof. The map ga — gstab(a) that associates the element ga of the
orbit with the left coset gstab(a) is well-defined and bijective. []
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Every group G acts on the family of all its subgroups by conjugation.
The orbits of this group action are called conjugacy classes. If H <
G, then the conjugacy class of H is the set of subgroups [H] =
{H' <G|H' =gHg™! for some g € G}. The set of conjugacy classes is
denoted by €(G). If H < G and H is normal, then the orbit containing
H is a singleton. If G is abelian, each orbit of ¥(G) is a singleton. If H,
and H, are subgroups of G, the relation H, < H, is a partial order on
the set of subgroups. It induces a partial order on €(G) by [H,] < [H,]
if and only if there is a Hl’ €[H,]and a Hé € [H,] such that Hf < H2’
The lattice (€(G), <) is called the reduced subgroup lattice of G.

We consider again a group G acting on an (arbitrary) set A. The
orbit O € A/G is said to be of type [H] € €(G) if the stabilizer of
some a in O belongs to [H]. If two orbits O, and O, are of the same
type, then there is a bijection ¢ : O; — O,, such that ¢(ga) = gp(a) for
all g € G and all a € O,. The function ¢ is called a G-isomorphism.
Define type(A/G,H) = {O € A/G|the type of O is [H]}. Note that
|A/G| = Z[H]G%(G) [type(A/G, H)|.

Having established the terminology, we consider now the family
of one-dimensional CAs with k states and » neighbours. The mapping
S R X L(k,n) — L(k,n); (a, f) — a&f fulfils the properties of a group
action. If f € L(k,n), the orbit of f is the set [f] = {&f | « € S R}
and the set of all orbits is denoted by L(k,n)/S)R. Local rules in the
same orbit are connected by symmetry transformations, while orbits
of the same type cannot be distinguished by symmetry transformations
alone. We abbreviate type(L(k,n)/S, R, H) to type(k,n, H). The aim of
this study is to develop a method for determining L(k,n)/S,R and
the sets type(k,n, H) where [H] € €(S,R), and in particular to derive
formulas for the cardinalities of these sets.

3.2. Counting orbits

The following lemma relates the number of orbits to the number of
fixed points of the group elements.

Proposition 5 (Burnside’s Lemma). Let G be a group acting on the set A.
The number of G-orbits is

14/6 = —= 3 Ifix(g)|.

Gl &

Proof. In the sum dez; |fix(g)|, each a € A is counted |stab(a)| times
(for stab(a) consists of all those g € G which fix a). If a and b lie in the
same orbit, then b = ga for a g € G. This implies stab(b) = gstab(a)g™',
and in particular [stab(b)| = |stab(a)|. So, the [G : stab(a)] elements
constituting the orbit of a are, in the above sum, collectively counted
[G : stab(a)]X|stab(a)| times. Each orbit thus contributes |G| to the sum,

and so ¥ . fix(g) = [4/G|x|G|. O

The proof was adapted from [22]. Burnside’s lemma gives the total
number of orbits. Since we are also interested in the distribution of
orbits by type, we will use the following method in Sections 4 and 5.
Let [H] € G(G). The set stab™ ([H1) = | yys¢ (s stab™" (H') is the union
of all orbits of type [H], all having length [G : H] = |G| /|H]|. Thus

type(A/G, H)| = |stab™ ([HD)| /[G : H]= |stab™ (H)|X|[H1|x|H]| [ |GI.
M

In calculating the numbers |stab™!(H)| we take a detour. The mapping
fix(H) from the set of subgroups of G into A does not create a partition
of A: if H, is a proper subgroup of H, (H, is a subgroup of H, and
H, # H,), denoted by H, < H,, then fix(H,) C fix(H,). The mappings
fix and stab are related

stab™! (H) = fix(H) \ | stab™ (H"), @

H<H'

where H' is also assumed to be a subgroup of G. Since the sets
stab~!(H) are disjoint, Eq. (2) implies

|stab™! (H)| = [fix(H)| — ) [stab™"(H")|. 3
H<H'
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To calculate |stab™! (H)]| for all subgroups, we start with G, for which
stab"1(G) = fix(G) holds, the calculation of the subgroups can then be
done successively.

In general, the numbers |G| and |fix(g)| are not sufficient to deter-
mine the numbers |type(A/G, H)|. The following example describes two
different group actions of the same group on the same set, so that the
numbers |fix(g)| are the same, but the distribution of orbits by type
is different. If a group G acts on a set A, it induces a homomorphism
@ G- S, g~ (a~ ga), where S, denotes the symmetric group of
A. We can therefore associate group elements of G with permutations of
the set A. Let V = {1, a,b,c} the Klein four-group and A = {1,2,...,6}.
Consider the group actions y; and y,, both mappings of V' x A onto A4,
where y, has the permutation representation

o1 =(0,0, =(12)(34), 0, = (34)(56), 0. = (12)(56);
and y, is given by
7= 0,7, = (12)34), 7, = (13)(24), 7, = (14)(23).

It is easily verified that these representations satisfy the group axioms
and are isomorphic to V. The first group action y, partitions A into the
orbits {1,2}, {3,4}, and {5, 6}, the second group action y, leads to the
partition {1,2,3,4}, {5}, and {6}. Note that |fix(a)| = |fix(b)| = |fix(c)| =
2 and |A/V| = 3 for both actions, while, for instance, type(A/V,V) =0
for the first action, but type(A/V,V) = {{5},{6}} for the second one.

3.3. Symmetry operators acting on the domain of the local rules

The domain of a local rule is the set " of all words over X having
length n. If H is a subgroup of S, R, the mapping H x 2" — X" defined
by (a, w) — aw satisfies the properties of a group action.

We will now study mappings that are defined on an orbit of X"/H.
Suppose A C X" is an H-orbit, and g is a mapping A - Z. If « € H
then aA = {aw|w € A} = A. This shows that the domain of ag is also
A. Hence we can speak about functions defined on A that are invariant
under H.

The set {A;,...,A,} of all H-orbits is a partition of X". If f is a
local rule invariant under H, then the restriction f|A4; is clearly also
invariant under H. On the other hand, if g; : A, - Z;i =1...,p,
is a sequence of mappings, all invariant under H, then the local rule
defined by f(w) = g;(w) if w € A, is also invariant under H. This shows
that invariant functions defined on the orbits are the building blocks of
invariant functions defined on X".

Let A be again an H-orbit A and suppose g : A — X is invariant
under H. Choose a word w in A, and consider a different word in
A, say v. Since there is an « € H such that v = aw, the relation
g(v) = agv) = agle~'v) = ag(w) holds, and the value of g(v) is
determined by g(w). This implies that there are at most k different
mappings g : A —» X that are invariant under H.

3.4. Examples

We will study the group action of ((01)r) on some of the orbits of
two-state and three-state neighbourhoods.

1. Let ¥ = {0,1}, and n = 2m be a positive even integer. Suppose
that the group ((01)r) acts on X". Consider the word w = 01"
(m copies of 0 followed by m copies of 1). The group action of
(01)r on w results in

Orw = (O1)r(0™1™) = (01)(1™0™) = 0"1" = w;

and so the set A = {w} represents a singleton orbit. Assume there
is a function f from A to X that is invariant under ((01)r). Then
f has to satisfy the relation f((01)rw) = (01)rf(w). But since
f((O)rw) = f(w), we obtain the contradiction f(w) = (01)f(w).
This shows that there is no local rule on X" that is invariant
under ((01)r).
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2. Let X be as above, let n =2m + 1 be a positive odd integer, and
let w € X", If we write w = ucw, where u and v are words of
length m and ¢ is a symbol of X, we see that

O)rw = (01)r(ucv) = (01)(rv)c(ru) = ((01)rv)((01)c)((01)ru).

Since for all ¢ € {0,1}, ¢ # (01)c, we conclude that w # (01)rw,
and that A = {w, (01)rw} is an orbit of length 2. Choose a symbol
a from {0,1} and set f(w) = a. If we set f((01)rw) = (01)a, the
function f is invariant under ((01)r). Since a was arbitrary, there
are two functions with domain A that are invariant under ((01)r).

3. Let ¥ = {0,1,2}, n = 2m be a positive even integer, and w =
0™1™. The singleton A = {w} is an orbit of ((01)r). Assume that
f is invariant on A. Then f(w) = (01)f(w) must hold, which is
satisfiable by the choice f(w) = 2. Hence there exists exactly one
function from A to ¥ that is invariant under ((01)r).

4. Let X be as above, but let n = 2m + 1 be a positive odd integer.
Consider a word w of X" and write it in the form w = ucv,
where u and v are words of length m and ¢ is a symbol. The
relation w = (01)rw leads to the constraints v = (01)ru and ¢ = 2,
satisfied by 3" words. If w is one of these words, a function f
defined on the orbit {w} that is invariant is constrained to the
value f(w) = 2. All other orbits of X" have length 2 and allow
for three different invariant functions.

3.5. The degree of an orbit

We have seen in Section 3.3 that the number of invariant functions
on an orbit is at most the size of the state set k = |X|. The examples
above have shown that the number of invariant functions might also be
smaller than k. Let H < S, R and A be an orbit of 2"/H. The degree
of A is defined to be the number of invariant functions on A, formally

deg(A)=|{f : A— 2| af = f forall a € H}|.

The procedure for calculating the orbits of a CA which we will
present shortly, requires to determine the degree of a given orbit. The
following two lemmas will facilitate this task. The first lemma states
that to determine the degree of an orbit, it is sufficient to consider all
group actions on only one word of the orbit. The second lemma says
that an orbit has degree k if the length of the orbit equals the order of
the group.

Lemma 6. Let H < S; R, A be an H-orbit, f be a function from A to X,
and w be any word of A. If f(aw) = af(w) holds for all a in H, then f is
invariant under H.

Proof. By definition, f is invariant under H if f(w) = af(a'w) for all
w € A and « € H. If we replace « by its inverse a~!, we see that the
condition becomes equivalent to f(w) = a~! f(aw) or f(aw) = af(w)
forallwe Aand a € H.

Let v € A and § € H. Assuming that the condition of the lemma
is fulfilled, we have to show that f(fv) = Bf(v). The proof is almost
trivial. Since A is an H-orbit, there is a y € H, such that v = yw. Then

S(Bv) = f((Bw) = (By)f(w) = p(y f(w)) = ffyw) = ff(v). O

Lemma 7.
deg(A) = k.

Let H < S R and A be an H-orbit. If |A| = |H|, then

Proof. Let w be any word of A, and a be any symbol of X. Define a
function f from A to X as follows. Set f(w) = a and let v be another
word of A. Since |A| = |H| there is exactly one a € H such that v = aw.
This shows that the value f(v) = af(w) = aa is well defined. Lemma 6
implies that f is invariant under H. []
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3.6. Outline of the complete calculation

Given a local rule space L(k, n), the method to calculate the numbers
[type(k,n, H)|, [H] € (S, R) is as follows.

1. Construct the group S, R that is the direct product of the permu-
tation group S, and the reflective group R = {0, r}. Having done
that, construct the sublattice of all subgroups of S; R.

2. For each conjugation class [H] of €(S,R) choose one repre-
sentative H € [H]. Determine the orbits of the group action
H x X" — X" and their degree. Then

[fix(H)| = H deg(A).
AESH|H
3. Beginning with S, R calculate stab™'(H) for all selected repre-
sentatives by using Eq. (3):

Istab™ ()| = |fix(H)| — Z Istab™ ! (H")|
H<H'

4. The number of orbits of type [H] is given by Eq. (1):
Itype(k, n, H)| = |stab™' (H)| X |[H]| X |H|/ |G].

Sum up the numbers to obtain |L(k,n)/S,R|, the total number
of orbits (or apply Burnside’s lemma).

3.7. Shift-equivalence

Another elementary equivalence relation was introduced in [19],
which we first illustrate with an example in the domain of elementary
CAs (k = 2, n = 3), using Wolfram’s nomenclature to label the rules,
see [11]. Set ¥ = {0,1} and consider the elementary CAs f|, and f3,,
defined by

1 if w=010o0r w=011
flz(w)={ 0 and

otherwise

Fuulw) = 1 if w=001 or w=101
T 0 otherwise

Define a function 4 : > — X by h(01) = 1 and h(w) = 0 if w # 01. Then
f12(aga;ay) = h(agay) and fau(aga;a,) = h(a;ay) for all aya a, € 3. It is
easy to see that @, =o® .

Two CAs (k, Ny, f) and (k, N,,g) are said to be shift-equivalent if
<I71fvl =gl digiz for some integer j, denoted by (D?r‘ 2 cb;v 2. The relation
2 is an equivalence relation. A mapping p : £" — =™, m < n, is called
a projection if there are integers g, ...,q,_; such that 0 < ¢, < -+ <
du-1 <n—1and play...a, ;) =ay ...a, | foralla..a,, €X" The
set {qg,.-..qy_1} is called the index set of the projection. A local rule
f : 2" > X is called reducible if there exists a local rule h : 2" — X
and a projection p : X" — X" with m < n, such that f = hop, otherwise
f is said to be irreducible. Let N = {j, ..., j,_;} be the neighbourhood
of the CA. If f is reducible, then there is a rule 4 and a projection p
such that f = hop, and the index set of p is minimal. If {q, ..., q,_;} is
this index set, the set M = { Jao - } C N is called the support of
7.

Suppose that f is reducible with support M, f = hop, the index set
of pis {qy, ..., q,_; }, and there is an integer ¢ such that M’ = M+t C N.
Write M’ = {jq(r), ’j‘iﬁnf }. Let p/ be the projection X" — >™ with index
set {q(’), ,q:n ) and define a local rule with the same neighbourhood
N as f by f' = hop'. From

gy

Dp(x); = (hOp’)(xiHO e X, ) = h(x,-+jq/ e Xigj )
o -1

= h(x;,; X
( iy +t 1+qu_]+t)

= 0 My Xy, )= 0 (0PI Xiny - i, ) = (0'D (X)),

follows @, = 6'®, so f and f’ are shift-equivalent.
Let N, and N, be integer intervals. Suppose |N| = n, |[N,| = m,
m < n, f € L(k,m), and f is irreducible. Then there are n — m + 1 local
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((01),r)

Fig. 1. The lattice of S,R.

rules g; € L(k,n) such that di}v‘ 2 oM g;. The reflected rules @::7 are all

different, but shift-equivalent: 45;’\;‘ 2 dié\g[f. If 1 is reflection-symmetric,
?f = f, then, if at all, only one of the g;, is reflection-symmetric. Note
also the general relation 7@, 2o, ; from Section 2.2. There is the
special case of |N,| =2, and |N,| = 1. Let f € L(k, 1), and consider the
rules gy, g, € L(k,2), such that gy(aya;) = f(ay) and g,(apa;) = f(a)).
Here, equivalence by reflection and by shift coincide: g, = fg, and
@, b @, . This shows that the orbits of L(k,2)/S, R remain unchanged
if shift-equivalence is taken into account.

Let N| = [—-ry,r],and N, = [—ry, rpy] with ry <r . If f € L(k,2ry+1),
pla_, ...a,)=a_, ..a., and g = fop € L(k,2r; + 1), then @, = @.
In this case, ®;, = @;, holds.

A local rule defined on a smaller neighbourhood might reappear in
multiple copies that are shift-equivalent when considering larger neigh-
bourhoods. We conclude that shift-equivalence is another important
elementary equivalence relation. However, it is of a different nature
since it concerns only local rules that can be defined on a proper subset
of the neighbourhood. The consideration of shift-equivalence into the
presented framework, which is based on the group of permutations and
reflection, goes beyond the scope of this study. Results for the number
of equivalence classes, obtained with a computer program that also
considered shift-equivalence, can be found in [19] for small families
of CAs (k=2,n=2,3,4and k=3, n=2).

4. Two states

This section deals with the orbits of one-dimensional two-state CAs,
that is X = {0,1}.

4.1. The group S,R

S,, the symmetric group of degree 2, contains as its elements the
identity 1 and the transposition (01). The direct product S,R is given
by

S)R =(OD)(r) = {1, (OD}{1,r} = {1,OD),r,(OD)r} ={OD),r).

The notation (a, §, ...) is called a generator, and denotes the group with
the property that every element of the group can be written as finite
product of the elements of the generator and their inverses. Since S,
is abelian and r commutes with 1 and (01), S,R is abelian too. It is
isomorphic to the Klein four-group. The lattice of subgroups is depicted
in Fig. 1.

4.2. 0dd number of neighbours
Suppose the number of neighbours is odd, n =2 m+1,m=0,1,2,....

For each subgroup H of S, R, we will calculate the number of orbits of
H acting on X". For the next paragraphs w denotes a word of X".
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1. The group (1). All orbits are of length 1, and so X" partitions
into 227+! singletons.

2. The group (r). The relation w = rw is satisfied if and only if the
word w is of the form ua(ru) where |u| = m and a is a symbol.
This relation is fulfilled by 2”*! words. The set of these words
divides into 2! orbits of length 1. The remaining 227+! — 27+1
words of X" are all in orbits of length 2. The total number of
orbits is therefore (227+! —2m+1y/2 4 om+1 = 2m(m 4 1),

3. The group ((01)). Consider any word w of X" and let a denote
the symbol in the centre of the word. Then (01)a is the symbol in
the centre of the word (01)w. This shows that the words w and
(0w are always different. Hence X" partitions into 22" orbits
of length 2.

4. The group ((01)r). As before, the words w and (01)rw are always
different. Hence the number of orbits is again 22”.

5. The group S,R. If w = rw holds, then also r(0l)w = (Ol)w
holds. We have seen that there are 2”+! words satisfying the
relation w = rw, and so there are 2" orbits of length 2 consisting
of the words w and (01)w. The remaining 22"*+! — 2"+ words
divide into orbits of length 4. Thus the total number of orbits is
(22m+l _ 2m+1)/4 oM = 2mfl(2m +1).

All the orbits of the groups have degree 2. Put H, = S,R, H, = ((01)),
H; =((0r), Hy, = (r) and Hs = (1). Set a; = |fix(H,)|, b; = |stab_](H[)|,
and ¢; = |type(2,n, H;)|, for i = 1,...,5. If p; is the number of orbits (of
degree 2) of the group H;, then q; = 2?. We get

by=a,=c;

by =a, —ay,c; =by/2;

by =a3—ay,c3 =b3/2;

by =a4—ay,cy =by/2;

bs =as—a; — by — by —by = as +2a; —ay — a3 — ay,c5 = bs /4.

The total number of orbits is given by Y, ;. Expressing the ¢;’s by the
p;’s leads to the following result.

Proposition 8. Let m be a nonnegative integer.

(i) The set of rules L(22m + 1)
! (2 x 227 4 22" @" ) 4 22! ) orbits.

(ii) The number of orbits of L(2,2m + 1) by type are

partitions  into

22m-1(2m+1);
(222'" _ 22'"*1(2'"+1)> .
(222'" _ 22'"-1(2'"+1>> .

(22'"<2'"+1) _ 22'"-‘(2'"+1)> :

[type(2,2m + 1,5, R)| =
[type(2,2m + 1,((O1)))]

|type(2,2m + 1, {(01)r))|

[type(2,2m + 1,(r))|

1
2
1
2
1
2
1

ltype(2. 2m + 1, (1)) L w2x 2oy

2% 222'71 _ 22m(2m+])> )

Part (i) is a particular case of Proposition 21 in [8].
4.3. Even number of neighbours

Suppose the number of neighbours is even, n = 2m, m = 1,2, .... For
the next paragraphs w denotes a word of X". Example 1 has shown
that there is no local rule invariant under ((01)r), and by implication
no local rule invariant under .S, R. Thus, in calculating the number of
orbits, we therefore only have to consider the remaining subgroups.

1. The group (1). The set X" partitions into 2> orbits of length 1.

2. The group {(01)). The set X" partitions into 22”"~! orbits of length
2.

3. The group (r). The set X" partitions into 2"~1(2" + 1) orbits.
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Table 1
Count of two-state orbits by type.
H [type(2,n, H)|
n=1 n=2 n=3 n=4 n=>5
(1), r) 2 0 8 0 1024
((OD)r) 0 0 4 0 32256
((O1)) 0 2 4 128 32256
(r) 1 4 28 512 523776
(1) 0 1 44 16064 1073447 424
3 7 88 16704 1074036736

All the orbits of the three groups above are of degree 2. Put H, = (r),
H, = ((01)), and H; = (1). Set a; = |fix(H,)|, b, = |stab~'(H,)|, and
¢; = |type(2,n, H;)|, for i = 1,2,3. If p; is the number of orbits (of degree
2) of the group H,, then a; = 27i. We get

by=apc;=b/%

by =ay,cy = by /25

by =a3—b; —by,c3 = b3 /4.

The total number of orbits is given by }’; ¢;. Expressing the ¢;’s by the
p;’s leads to the following result.

Proposition 9. Let m be a positive integer.

(i) The set L(2,2 m) of local rules
! (22”’"<2’"+U +22" 4 222”‘) orbits.

(ii) The number of orbits of L(2,2 m) by type are
[type(2,2 m, ((OD)))
[type(2,2 m, (r))|
type(2.2 m, (1)) =

partitions  into

1 An2m—1
22

1h2m=lamyyy,

22 ’

1 (222m _ 222m—l _ 22m—1(2m+1)> )
4

Table 1 depicts the number of orbits of two-state CAs for a neigh-
bourhood size n = 1,...,5. For each n and each subgroup H of S,R
the table gives the number of orbits of stab~!(H). The last row lists the
total number of orbits for a given n.

5. Three states

After calculating the orbits of one-dimensional two-state CAs in
Section 4 this section deals with one-dimensional three-state CAs, that
is X = {0,1,2}.

5.1. The group S;R

The group S3 R, which is the direct product of the symmetric group
S5 and the reflection group R, contains all the symmetry operators of
one-dimensional three-state CAs.

Some remarks:

1. S5 is not abelian, and neither is S;R, for instance (01)(02) =
(021), but (02)(01) = (012).

2. The depiction of the lattice of subgroups, Fig. 2, arranges groups
of equal order in the same row. From bottom to top the orders
are 1, 2, 3, 4, 6, and 12.

3. The dashed rectangles demarcate conjugacy classes of
subgroups. The other subgroups are normal and form singleton
classes with respect to conjugation. Collapsing the conjugacy
classes into single nodes result in the reduced subgroup lattice.

4. Groups are specified by generators, e.g. .S = ((01), (12)).

. From [(012)r]® = r follows ((012)r) = ((012), r).

6. The group ((01)r,(012)) consists of the elements 1,(01)r, (12)r,
(20)r, (012), and (021).

9]
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5.2. The orbits of the subgroups of S;R acting on X"

The following lemma facilitates the calculation of orbits of sub-
groups that contain the permutation (012).

Lemma 10. Suppose H is a subgroup of S; R that contains the permutation
(012), and suppose that A is an orbit of H acting on X". Then the number
3 divides the length of A.

Proof. There is no word in X" that is invariant under (012). This is
equivalent to saying that for all words w in X", the permutation (012)
is not an element of the subgroup stab(w), and hence that the group
((012)) is not a subgroup of stab(w). Since (012) and (210) are the only
elements of order 3 in H, the subgroup stab(w) is not divisible by 3.
From |stab(w)| |A| = |H| follows the proposition. []

The next simple lemma will help us in classifying orbits of degree

Lemma 11. Suppose H is a subgroup of S;R and A is an orbit of H
acting on X". Then deg(A) <1

(i) if (01) € H and there is a w € A such that w = (01)w; or
(i) if (O1)r € H and there is a w € A such that w = (01)rw.

Proof. Let a be (01) or (01)r and suppose that f is an invariant function
from A to X. Then the relation f(w) = o' f(aw) = af(w) implies
fwy=2. O

All words below are understood to be words over ¥. The word
w always denotes a word of X". Sometimes we will write w as a
concatenation of two words, that is w = wuv, if n = 2m is even, and
as a concatenation of a word, a symbol, and a further word, that is
w = uav, if n =2m+ 1 is odd. If we do so, we assume that |u| = |v| = m.
For each subgroup H of S;R the number of free orbits of H acting on
3" is calculated as follows. In the calculations themselves we will make
frequent use of Lemma 7 and Lemma 11, without explicitly referencing
them.

1. The group (1). X" splits up into 3" orbits of length 1.

2. The group (r). A calculation similar to the state set of size 2
yields (3" + 3™)/2 orbits of degree 3 if n = 2m is even, and
(3%m+1 4 3m+1y /2 orbits of degree 3 if n =2m + 1 is odd.

3. The groups ((01)), ((12)), {((20)). We study ((01)). Only the word
w = 2" (n copies of 2) satisfies the equation (01)w = w. Hence
the orbit {2"} is of degree 1. The remaining words split up into
(3" — 1)/2 orbits of length 2 and degree 3.

4. The groups ((01)r), ((12)r), {(20)r). We study ((01)r).

Suppose n = 2m is even and w = uv. The relation uv = (01)r(uv) =
((01)rv)((01)ru) implies v = (01)ru and so is satisfied by 3" words
which form 3" orbits of length 1 and degree 1. The remaining
words split up into (32 — 3™)/2 orbits of degree 3.

Suppose n = 2m + 1 is odd and w = uav. The relation uav =
(0D)r(uav) = ((01)rv)((01)a)((01)ru) implies v = (01)ru and a = 2,
which is satisfied by 3" words resulting in 3" orbits of length 1
and degree 1. The remaining words split up into (32"+! — 3™)/2
orbits of degree 3.

5. The group ((012)). All orbits are of the form {w, (012)w, (210)w}
with pairwise different elements. This shows that X" partitions
into 3"~! orbits of degree 3.

6. The group S5 = ((01),(12)). The orbit {0",1",2"} is of degree 1
because (01)2" = 2". The remaining words split up into (3"~! —
1)/2 orbits of length 6 and degree 3.

7. The groups ((01),r), {(12),r), {(20),r). We study ((01),r). Only
the word 2" satisfies the relation w = rw = (01)w = (01)rw. The
corresponding orbit {2"} is of degree 1.

Suppose n = 2m is even. There are two ways that the orbit {w,
rw, (01w, (01)rw} can fold up into orbits of length 2.
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((01), (12),r)

((01)r, (012))

(00).7) (12).7) ((20).7) |
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((01),(12)) ((012),7)

((012))

(OU) ((12)7) (20)r) 1| (L)) ((12)) (02) (r)

Fig. 2. The lattice of S;R.

First, if w = rw and w # (01)w holds. From the set of 3" words
that satisfy w = rw we remove 2". The remaining words in this
set split up into (3" — 1)/2 orbits of length 2 and degree 3.
Second, if rw = (01)w and rw # w holds. If w = uv the relation
rw = (01)w implies v = (01)ru. As above, we remove from the
set of 3" words that satisfy this relation the word 2" to obtain
(3™ — 1)/2 orbits of length 2 and degree 1.

The remaining 3*" —2(3" — 1) — 1 words in X" split up into orbits
of length 4 and degree 3. Summing up the orbits of degree 3,
we obtain for their number (32" —2(3" — 1) - 1)/4+ (3" - 1)/2 =
(32" —1)/4.

Suppose n = 2m + 1 is odd. We consider again the two different
types of orbits of length 2.

The first occurs, if w = rw and w # (01)w holds. A similar
calculation as above obtains (3! — 1)/2 orbits of length 2 and
degree 3.

The second occurs, if rw = (01)w and rw # w. If w is written
as uav, the relation becomes (rv)a(ru) = ((0D)u)((01)a)((01)v),
yielding the constraints v = (01)ru and a = 2 which are satisfied
by 3™ words. Removing the word 2" from this set results in
(3™ —1)/2 orbits of length 2 and degree 1.

The remaining 32”1 — (3" - 1)~ (3" - )= 1 = 3" - 13" - 1)
words in X" split up into free orbits of length 4. Hence the total
number of orbits of degree 3 is (3"+! —1)(3" —1)/4+ 3"+ -1)/2 =
@Bm - 1)@+ 1)/4.

8. The group ((012)r). If w = rw, then {w, (012)w, (210)w} is an orbit
of length 3. If w # rw, the orbit containing w is of length 6. The
calculation is similar to the one of the group (r). If n = 2m is
even, X" partitions into (32"~! + 3"~1)/2 orbits of degree 3, if
n=2m+1is odd, X" partitions into (32" +3™)/2 orbits of degree
3.

9. The group ((01)r,(012)). An orbit is of length 3 if and only if the
orbit contains a word w that satisfies the relation w = (01)rw.

10.

Suppose n = 2m is even and write w = wv. Then w = (01)rw
holds if and only if v = (01)ru holds. Each of these 3" words is
in a different orbit. This shows that there are 3" orbits of length
3. All of them have degree 1. The remaining words split up into
(3%"=1 — 3™)/2 orbits of length 6 and degree 3.

Suppose n = 2m + 1 is odd and write w = uav. Then w = (01)rw
holds if and only if v = (01)ru holds and a = 2. Again, this shows
that there are 3™ orbits of length 3 and degree 1. The remaining
words split up into (32" — 3™)/2 orbits of length 6 and degree 3.
The group S;R. The set {0”,1",2"} is the only orbit of length 3.
The degree is 1. If n =1 it is the only orbit.

Suppose n = 2m is even. By Lemma 10 the next possible length
of an orbit is 6. If w is a word in an orbit of length 6, either
w = rw or w = aw, where a denotes a transposition. There are
3™ words for which w = rw. If we subtract the 3 words of the
orbit of length 3, we obtain 3(3"~! — 1) words that split up into
(3™1—1)/2 orbits of degree 3. There are also 3" words for which
w = (01)rw, or 3x3™ words for which w = arw, where a denotes
any of the three transpositions (01), (12), (20). If we subtract the
3 words of the orbit of length 3, we obtain 3(3" — 1) words that
split up into (3" — 1)/2 orbits of degree 1.

The remaining words of X" partition into orbits of length 12. The
number of remaining words is 32" — 3(3"~! — 1) —3(3" — 1) - 3,
splitting up into (3" —1)(3"~!—1)/4 orbits of length 12 and degree
3. The total number of orbits of degree 3 then is (3" — 1)(3"~! —
D/4+G3" 1 -1/2=0G6"+1D3" ! -1)/4.

Suppose n > 1 and n = 2m + 1 is odd. There are 3™*! words
that satisfy w = rw. Similar to the calculation above, we obtain
3m+l _ 3 words that split up into (3" — 1)/2 orbits of degree 3.
The relation ucv = (01)r(ucv) implies v = (01)r and ¢ = 2. As
above, we see that 3"+! — 3 words satisfying w = arw split up
into (3" — 1)/2 orbits of degree 1.

The remaining words of X" partition into orbits of length 12.
The number of remaining words is 32! —6(3" — 1) — 3, splitting
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Fig. 3. The orbits of S;R acting on {0,1,2}3.

up into (3" — 1)%/4 orbits of length 12 and degree 3. The total
number of orbits of degree 3 then is (3" — 1)2/4+ (3" — 1)/2 =
(3% — 1)/4. Fig. 3 depicts the orbits of X3/.5;R. The graphs are
informal, highlighting certain symmetries of the orbits.

5.3. Counting the orbits of L(3,n)/S3R by type

Too shorten the notation, we enumerate the representatives of the
conjugation classes: H, = S3R, H, = ((01)r,(012)), H; = ((01),(12)),
H, = ((012)r), Hs = (O1).r), Hs = ((012)), H; = ((O1)r), Hy = ((OD)),
Hy = (r), and H,y = (1). We set a; = [|fix(H,)|, b; = [stab™'(H,)|,
and ¢; = [type(3,n, H})|. In the previous subsection we determined the
degree of orbits for one representative H; of the conjugation classes
[H;]. If p; is the number of orbits of H; of degree 3, then a4; = 37i. We
express now b; and ¢; in terms of a;. Then

by =a; =cy;
by=a,—a;,c; =by/2;
by =a3—aj,c3 =b3/2;

bs = a5 —ay,c5 = 3bs/3 = bs;
bg =

by=a;—a;—by—bs=a;+a —a,—as,c; =3b;/6=b;/2;

ag—a; —by —by— by =ag+2a; —a, —ay —ay,cg = bg/4;

by =ag—a; — by —bs = ag +a; —ay —as,cg = 3bg /6 = bg /2;

by = ag —a; — by — 3bs = ag + 3a; — ay — 3as,cy = by /6;

byg =ajg—a; — by — by — by — 3bs — bg — 3b; — 3bg — by

=ayg— 6a; +3a, +3a3 + ag + 6as — ag — 3a; — 3ag — ag, ¢y = byy/12.

The equations for cs, ¢;, and ¢g contain an additional factor 3 due
to the size of the conjugation classes, see Eq. (1) and Fig. 2. The total
number of orbits is therefore
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1 1 1
gci=E(a9+a10)+6(a4+a6)+z(a7+a8). “4)

Proposition 12. Let m be a nonnegative integer. The set L(3,2m + 1) of
local rules partitions into
i (3(32m+l+3m+])/2 n %32m+l ) i l (3(32m+3m)/2 i 332m>
12 ) 6
" l (3(32m+]_3m)/2 + 3(32m+]_1)/2>
4

orbits.
Let m be a positive integer. The set L(3,2 m) of local rules partitions into

l_12 <3(32m+3M)/2 + 332m> + é (3(32m71+3m71)/2 + 332",71)

+1 <3(32"’—3"'>/2 " 3<32"1—1>/2)
4
orbits.

The total number of orbits can be derived more simply from Burn-
side’s Lemma:

1 .
|L3,n)/S3R| = —— Ifix(e)| =
|S3R| aE%R

D 100 — 011
\ /
012 — 210 001 — 110
102 201 122 — 221 112— 211
120 — 021 220 — 002
/ \
022— 200
Table 2
Count of three-state orbits by type.
H Itype3, 1, H)| |type(3,2, H)| |type(3,3, H)|
(1), (12), r) 1 1 9
((01)r, (012)) 0 0 9
(D), (12)) 0 1 36
((012)r) 1 4 360
(OD),r) 2 8 6552
{(012)) 0 4 4716
(O1)r) 0 9 262431
(1)) 0 35 793845
(r) 3 116 64566 684
(1) 0 1556 635433642324
7 1734 635499 276 966

1—12 (Ifix(D)] + |Fix(r)] + 3|Fix((O1)] + 3|Fix((O1)r)]|
F2[£ix((012))] + 2|fix((012)r)]) ,

where we have used the relation |fix(«)| = |fix(faf~1)|. If we note that
fix(a) = fix({a)), we obtain Eq. (4). Since the calculation depends only
on the cyclic subgroups, Burnside’s lemma is preferable, if only the total
number of orbits is required.

Table 2 lists the cardinalities of orbits by type, i.e. |type(3,n, H)|,
[H] € B(S3R), for a neighbourhood size of one, two, and three. The last
row gives the total number of orbits, that is |L(3,n)/S3R|. In contrast
to two-state CAs, we have refrained from giving explicit formulas for
¢; = |type(3,n, H;)| in the above proposition. These formulas become
lengthy, but can be easily derived by expressing the ¢;’s in terms of the
p;’s above.

5.4. Constructing local rules that are invariant

The focus of this study so far has been on deriving formulas for the
cardinalities of the orbits of CA rules by type as well as for their total
number. We point out that an analogous method to the one described
in Section 3.6 can be used to actually construct the local rules that
are invariant. We will not treat this subject systematically, but give an
example. Let ¥ = {0,1,2} and n = 3. The orbits of S;R acting on >3
and their degrees were derived in Section 5.2 and depicted in Fig. 3. We
have also seen that the degree of orbit A and C is 1 and the degree of
orbit B and D is 3. According to Section 3.3, we form the set of local
rules {f} on X3 by considering the restriction of f on the partitions
A, ..., D, denoted by f4, ..., fp. Since the degree of A is 1, we need to
determine the value of f, for a given word w, for instance 000. The
relation (12)f4(000) = f4((12)000) = f,(000) implies f,(000) = 0. The
other values follow from f,(«000) = af4(000) = a0, « € S3R. Similarly,
(02)rfc(012) = fo((02)r012) = f-(012) implies f-(012) = 1, the other
values follow as above. Thus there is only one function f, on A and
only one function f- on C invariant under S;R:

P 000 111 222 fom 012 210 201 102 120 021
A7\ o 1 2 )7 7T\ 1 0 0 2 2 )

The orbit B is of degree 3, so we can pick a word in B, say 010, define
fp(010) = a with a € X arbitrary, and derive the other function values
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fp= 001 100 011 110 112 211 002 200 022 220 122 221
D=\ » b ODb  (Ob (012)p (012)b (12)b  (12)b  (021)b  (021)b  (02)b  (02)b) ~
Box I.

Table 3
Python 3 program that calculates the number of orbits.

import itertools as it
k=3; n=2

s = tuple(range(k))
def enc(w)

# state set (0,1,..,k-1)
# encodes a word

# number of states; neighbourhood size

v=20

for a in w : v = k*v+a

return v # returns w[0]l*k~(n-1)+..+w[n-1]
rfl_pairs = [(enc(w),enc(w[::-1])) for w in it.product(s, repeat=n)

if w = wl::-1]]
def reflectRule(f)
g = list(f)
for (i,j) in rfl_pairs
return tuple(g)
def permutateRule(f, perm)
g = [0] * k¥*n
for w in it.product(s, repeat=n) :
glenc([perm[al for a in w])] = perm[f[enc(w)]]
return tuple(g)
def orbit(f)
orb = set()
for perm in it.permutations(s)
pf = permutateRule(f,perm)
orb.update ({pf, reflectRule(pf)})
return tuple(orb)
def countOrbits()
processed = set()
count = 0
for f in it.product(s,repeat=k**n)
if f not in processed :
count += 1
processed.update (orbit (f))
return count
print (countOrbits())

# returns reflected rule
# copy £
: glil = £[3]

# returns the orbit of £

# counts all orbits

as above. So

s 010 101 202
B=\a (ODa 021a) "

We proceed with orbit D in the same way and set f,(001) =b, b €
X, see the unnumbered equation given in Box I. We set f(w) = fy(w)
if w € X. Since a and b were arbitrary symbols of X, there are 9 orbits
of length 1 of type S3R, in accordance with the entry |type(3,3, S3R)|
in Table 2.

121
(012)a

212
(02)a

020
(12)a

6. Validation

In the previous sections the exact numbers of orbits for
one-dimensional two-state and three-state CAs were calculated. This
section takes another approach and describes an algorithmic brute-
force approach to determine these numbers for small k and n. The
algorithm is implemented in Python 3 and depicted in Table 3.

We start with some general considerations applicable to any pro-
gramming language that supports arrays (referred to as sequences in
Python). The state set £ = {0,1,...,k — 1} is ordered, and so is the
set X" if we adopt the lexicographical order. We write the set X" as
an increasing sequence (w;); 0 < i < k". This arrangement allows for
the representation of a local rule f by the sequence (b;), 0 < i < k",
where b; = f(w;). We define an encoding function, denoted by enc,
which maps a word to an integer. The function returns the index i of the

# returns permutated rule

# prints number of orbits

10

# pairs (i,j), w_j = rw_i != w_i

# keep track of processed rules

word w within the sequence (w;) such that w = w;, or equivalently, the
numerical value when w is read as a number in base k: if w = a,_; ... ay,
then enc(w) = a,_ k"' + - + ay. Given a local rule f represented by
the sequence b = (b;) and a word w, to find f(w) compute j = enc(w),
and then access the jth element in the sequence b: f(w) = b;.

The program listed in Table 3 implements local rules and words
as sequences. The symmetry operators are implemented in a manner
closely aligned with their theoretical definitions.

We first discuss the reflection operator. The variable rf1_pairs
refers to a sequence of integer pairs (i, j) satisfying the relations w; =
rw; and w; # rw; (wl::-1] is a Python idiom used to reverse
a sequence). The function reflectRule takes a sequence f that
represents a rule, and returns its reflected version g. Initially, the rule
provided as argument is copied into the variable g. Then, a for loop
iterates over refl_pairs, modifying the values of g accordingly to
the pairs of reflectRule.

We now shift focus to the implementation of the permutation op-
erator. Permutations of the state set are represented as sequences of
length k. The function permutateRule accepts a local rule £ and a
permutation perm, and returns the permutated rule g. It begins with
initializing the variable g with a sequence of length k". A for loop then
iterates all words in the domain, and for each word w, g is changed,
according to the equation g(o(ay...a,_;)) = g((cap)...(ca, ) =
of(ag...ay,).



M. Schaller and K. Svozil

The function orbit determines the orbit of the input function f.
It iterates all permutations of X, and adds the permutated rule and the
permutated and reflected rule to the orbit. If f is invariant under a
certain operation then f will not be changed. Since the underlying data
structure of the equivalence class is a set, subsequent additions of the
same element have no effect.

Lastly countOrbits iterates the set of local rules:
it.product (s,repeat=k**n) creates the cartesian product of ¥
with itself, k" times, representing the set of local rules. If a rule belongs
to an orbit of an already processed rule, the body of the for loop is
skipped. Otherwise a new orbit is created, the counter is incremented,
and the members of the class are stored in a set referenced by the
variable processed.

On a typical PC, the program prints the result within a few seconds
for the input parameters k = 2 and n < 4 as well as for k = 3 and
n < 2. With an optimized implementation and improved hardware, it
might be possible to achieve results for a few additional combinations,
such as k = 2, and n = 5. However, the algorithm’s runtime complexity
prevents calculations for larger input parameters.

The presented implementation is minimalistic. We briefly explore
two kinds of improvements.

1. By incorporating minor changes, more detailed insights about
the orbits can be obtained. As an example, adding a hashtable
to the function body of countEquiClasses allows tracking
the number of equivalence classes based on their size.

2. Although traversing the entire domain might be unfeasible, ex-
ploring only parts of it might still be instructive. For instance, if
the main loop is adjusted to iterate only the set fix({(012))), it is
feasible to obtain the results for the upper lattice of S3 R, which
consists of groups that encompass the group ((012)).

7. Summary

This work investigates the classification of one-dimensional cellular
automata (CAs) into orbits (also called equivalence classes) using a
group-theoretical approach. A cellular automaton operates on a bi-
infinite lattice of cells, each existing in one of a finite number of
states, and evolves according to local rules that depend on a fixed-size
neighbourhood of cells.

The study defines equivalence through transformations such as
reflection, permutation of states, and their combinations. The key
contributions include:

Formalizing orbits by systematically incorporating symmetry op-
erations, including reflection and state permutations, to identify
and group equivalent rules within the set of local rules;
Deriving orbits for two-state and three-state cellular automata
with arbitrary neighbourhood, which generalizes previous results
and corroborates existing findings, such as the well-established 88
equivalence classes for elementary cellular automata (two states,
three neighbours);

Exploring group actions and symmetries acting on the set of local
rules, developing a comprehensive methodological framework for
calculating orbits of the set of local rules across varying numbers
of states and neighbourhood sizes;

Classifying orbits by their isomorphism type with respect to the
symmetry operations and giving results for the number of orbits
per type;

Implementing an algorithmic validation through a brute-force
approach in Python, empirically verifying the theoretical results
for families of CAs with a small set of local rules.

The study concludes by highlighting the significance of symmetry-
based classification in substantially reducing the number of unique CA
rules. This approach provides a rigorous foundation for future investi-
gations into cellular automata dynamics and computational properties,
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potentially opening new avenues for understanding discrete complex
systems and computational mechanisms.
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