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Quantum physical resources are directional quantities that can be
formalized by unit vectors or the associated orthogonal projection
operators. When compared to classical computational states which are
elements of (power) sets vector computations offer (dis)advantages.

16.1. Epistemology versus Ontology in the Quantum

Computation Context

In order to claim practical relevance, any notion and quantitative

means of “computation” has to be ultimately grounded in physics,

because information is physical ,1 and so is the manipulation of

information. The Church-Turing thesis — in Turing’s own words a

man provided with paper, pencil, and rubber, and subject to strict

discipline, is in effect a universal machine.2 — is a conjecture

attempting to achieve just this goal: connecting physics to an appro-

priate formalism.

Yet such conceptualizations bear, in their very success, a dan-

gerous tendency to forget about the analogy and instead go for the

formalism. Thereby nature is confused with formalism — indeed, our

own partly formalized narratives about nature — just as theater3

is taken for life, or propaganda4 for fact. This results in beliefs

in theoretical and hypothetical conceptual entities, the existence of
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various religious stigmas and social pressures, that taken together,

amount[[ed]] to an evangelical crusade.5

Thereby, issues related to the formal representability of physical

entities and processes are far from settled, and bordering on the

mysterious.6 Yet, unlike Wigner, I believe that there may be at least

two handy but mutually contradicting reasons for the effectiveness

of mathematics in the natural sciences: one postulates that laws

“emerge” from disorder.7–9 Another, apparently converse, reason for

lawfulness is that we are inhabiting a virtual reality simulated by

a computational process.10–14 In this hypothesis whatever “laws of

nature” science might discover should be perceived as epistemic,

intrinsic reflections of, or correspondences to, this ontological, extrin-

sic (to us) computation.

The above rant served the purpose to suggest, and prepare

the reader for, a cautious disengagement between epistemology and

ontology — what might be claimed and believed to be known on the

one hand, and what may be “lurking behind the detector clicks” on

the other hand. Even with this proviso, one has to keep in mind that

there is no “Archimedean point” or “ontological anchor” upon which

an “objective reality” (whatever that is) can be based.

In particular, whenever claims are issued about quantum

resources, assets, or features — such as quantum parallelism by

coherent superposition of classically distinct states, or entanglement

as the relational encoding of multi-partite states — which might

go beyond operationally established classical means and could give

rise to quantum advantages, caution is advisable. Because in such

cases the metaphor might supervene or “outperform” the simulated,

yielding improper expectations and overstated, almost evangelical,

claims.15

16.2. Types of Quantum Oracles for Randomness:

Pure States in a Superposition Versus Mixed

States

There is a sombre fact of contemporary quantum physics: as of today

the “measurement problem”, as contemplated by von Neumann,16
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Schrödinger,17, 18 and repeated by Everett19, 20 and Wigner,21 despite

numerous attempts to resolve it,22 remains disputed and unsolved.

One of the issues is the simple mathematical impossibility to achieve

irreversibility — the notorious “collapse of the wave function”,

or state reduction at measurement point23 — from a completely

reversible temporal evolution. Indeed this should be indisputable

from “group theory 101”: the concatenation of unitary operators

never yields outside of the realm of unitary and thus reversible

transformations. For finite groups, Cayley’s theorem states that one

essentially is dealing with permutations, with one-to-one transforma-

tions, with re-expressions, re-samplings of the same “message”.

Stated differently a nesting argument16, 19–21 essentially “enlarges”

the domain of reversibility to include whatever resources or regions

of (Hilbert or configuration) space are necessary to re-establish

reversibility, thereby disputing any irreversibility postulated by quan-

tum mechanics.24–32 For all practical purposes33 quantum sys-

tems remain “epistemically” irreversible,34, 35 but so are classically

reversible statistical systems, for which the entropy increase dissolves

into thin air as one looks “closer” at individual constituents.36

Having just avoided the quantum Scylla of “irreversibility

through reversibility” brings us closer to the quantum Charybdis of

“quantum jellification” by the prevailing quantum superposition of

classically distinct states of matter and mind, described so vividly in

the late Schrödinger’s Dublin seminars,18 repeating the cat paradox17

in terms of jellyfish. Without measurement — how can we and

everything around us “remain stable” and not dissolve into the

chasm of coherent superposition, and how come that, despite this,

we experience a fairly unique cognition and presence?

Dirac’s “why bother?” objection33 to all of this might be to not

bother at the moment and leave the task of solving these issues

to future generations. Feynman went a step further and demanded

to cease thinking about them, thereby taking the formalism for

granted (like a gospel) as given, and thus effectively shut-up and

calculate.37–39

However, such a repression strategy has consequences: first of

all, as mentioned earlier the deterministic, unitary evolution of
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quantum states (through nesting) contradicts assumptions about

irreversible measurements. Thereby the ontology of the alleged

irreducible randomness of single events through measurements of

a coherent superposition of classically distinct or even mutually

exclusive states remains open. Under such circumstances no justi-

fication for their stochastic character, no “quantum certification”40

of, in theologic terminology, creatio continua, can be given, because

consistency issues are unresolved and currently abolished, thereby

either relegating a resolution of the argument to the future or not

addressing the ontology at all. Quantum uncertainty and random

outcomes via irreversible measurements of coherent superposition

therefore remains conjectural.

Another related ontological issue regards the existence of mixed

states. First of all, the same issues as for measurements are pertinent:

how does one obtain a mixed state from pure ones by one-to-one

unitary state evolution? Claiming to be able to obtain mixed states

from pure ones amounts to pretending to get along with outright

mathematical incorrectness.

One formal way of generating mixed states from pure multi-

partite states is by taking the partial trace with respect to the Hilbert

space of one particle, a “beam dump” of sorts.34, 35 As the trace is

essentially a many-to-one operation, irreversibility ensues. This can

be easily corroborated by the non-uniqueness of purification which

can be envisioned as the “quasi-inverse” (because, strictly speaking,

due to non-uniqueness there is no inverse) of the partial trace [41,

Section 8.3.1].

So what is the ontologic status of mixed quantum states? This

again is unknown and may again, by the “why bother?” objection,33

be relegated until some later times. Again the question arises: how

can we trust quantum random sequences originating from mixed

state measurements?

Even more convoluted is the question if there is any criterion

or difference between sequences generated by measurement of pure

states which are in a coherent superposition on the one hand, and

by measurement of mixed quantum states on the other hand. As we

cannot even formally grasp consistently the notions of irreversible
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measurement and production of mixed states we ought to accept

our total loss to conceptualize the differences or similarities between

them. We are left with the hope that, as both issues appear to have

the same group-theoretic roots, any solution of one will, by reduction,

entail a solution of the other.

Another “fashionable” attempt to ascertain and thereby certify

quantum randomness involving “quantum contextuality”42, 43 would

be to assume the co-existence of complementary observables and,

relative to the respective implicit assumptions (most notably context

independence), prove (by contradiction or statistical demonstration)

the impossibility for any value definiteness of complementary, incom-

patible observables prior to measurements.43–47 Suffice it to say

that, as these hypothetical arguments go they are contingent on the

respective counterfactual configurations imagined, and thus appear

subjective and inconclusive.48

16.3. Questionable Parallelism by Views on a Vector

From now on only pure states, represented by (unit) vectors spanning

a 1D subspace of a vector space, will be considered. Schrödinger’s

aforementioned question regarding quantum jellification,18 a variant

of his earlier “cat paradox”,17 might be brought to practical use for

quantum parallelization: for the sake of irritation suppose, as is often

alleged in quantum computations, that the many mutually exclusive

(classical) states in a coherent superposition be not alternatives but

all really happen simultaneously . . . if the laws of nature took this

form for, let me say, a quarter of an hour, we should find our

surroundings rapidly turning into a quagmire, or sort of a featureless

jelly or plasma, all contours becoming blurred, we ourselves probably

becoming jelly fish.

One of the simplest answers that can be given to these concerns

is that this is just an epistemic question arising from a “wrong”

viewpoint or perspective. Because if one chooses an orthonormal basis

of Hilbert space of which the state vector is an element then the

coherent superposition reduces to a single, unique term — namely,

that unit vector. Unitary quantum evolution amounts to “rotating”
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this vector in Hilbert space. There is no “jellification” of this state

with respect to the “proper” bases (for dimensions higher than 2

there is a continuum of bases) of which the state is one part. In this

view, there is no “simultaneous existence” of two or more classically

distinct states. All other probabilistic views are mere (continuity of)

multiplicities, projections of sorts. For a similar, more formalized,

vision see Gleason’s remarks on taking the square of the norm of the

projection in the second paragraph of Ref. [49].

Indeed, one can find some hints on this solution in Schrödinger’s

own writings on the Vedantic vision [50, Chapter V]: the plurality that

we perceive is only an appearance; it is not real. Vedantic philosophy,

in which this is a fundamental dogma has sought to clarify it by

a number of analogies, one of the most attractive being the many-

faceted crystal which, while showing hundreds of little pictures of what

is in reality a single existent object, does not really multiply that

object.

This might be considered bad news for quantum parallelism.

Because if any such parallelism is based upon epistemology — about

appearance without any substantial reality — all that remains as a

resource is our ability to measure properties of the vector from a

“different angle” than the one this vector has been defined.

This is particularly pertinent for the “extraction” of information

in a coherent superposition by classical irreversible measurements

(cf. my earlier comments in Section 16.2) “reducing” a coherent

superposition of a exponential variety of hypothetically conceivable

classical distinct states to a single such state. Because what good is

it to contemplate about such a counterfactual variety if we have no

direct access to it?

It gets even more problematic as we have postulated that the

“extraction”, the outcome corresponding to this single state, occurs

without sufficient reason51 and thereby eventualizes in an irreducibly

stochastic40 manner, a situation denoted in theology by creatio

continua: one can get only a single click or outcome per experiment,

corresponding to an “exponential reduction” of computational states

with respect to the state vector representation prior to extraction.
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16.4. Computation by Projective Measurements

of Partitioned State Space

Nevertheless, even in this reduced scheme of parallelism, it might

be possible to formulate relational queries corresponding to useful

information by appropriate partitioning of the state space.52–54 We

may formulate the fundamental problem of intrinsically operational

vector encoding of a computation aka quantum computation: under

what circumstances is it possible to derive “useful” information about

(the components) of a vector?

It is not too unreasonable to suspect that an answer to this

question can be given in terms of relational properties of the vector

encoding.55,56 Deutsch’s algorithm [41, Section 1.4.3] as well as the

quantum Fourier transform based on period finding [41, Section 5.4.1]

may be examples for such relational encodings realizable by state

mismatches (“prepare one state, measure another”). More generally,

the partitioning of finite groups by cosets, in particular, the hidden

subgroup problem [41, Section 5.4.3] maybe a way to systematically

exploit views on vectors, but so far there exists only anecdotal

evidence [41, Figure 5.5, p. 241] for that.

There is a way to extract information from a quantum state

by constructing proper (with respect to the computational task

or query) subspaces and the orthogonal projection operators onto

such subspaces. How ought this computational method be under-

stood? It will be argued that it could be perceived in terms of

(equi)partitioning the quantum state space, and, as mentioned

earlier, by using the respective projection operators as filters.52–54

Suppose it is possible to encode (the solution to) a problem

into a Hilbert space spanned by a collection of pure state vectors

encoding functional instances and functional properties into one-

and higher-dimensional subspaces thereof. For instance, a binary

function of several bits can be encoded into quantum states (i) by

state vectors whose first components with respect to an orthonormal

basis (normalization aside) are either 0 or 1, depending on whether

or not the function on the inputs evaluates to 0 or 1, and (ii) later
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“auxiliary” components are added to ensure mutual orthogonality

of the state vectors. That is, in order to obtain an orthonormal

basis one could, for instance, employ dimensional lifting, and thereby

enlarge the Hilbert space. This results in an orthonormal (after

normalization) basis of the aforementioned Hilbert space. Therefore

the elements of the orthonormal basis represent the individual

instances of the function or problem.

Now if one forms the orthogonal projection operator as the sum

of the dyadic products of the respective vectors of the orthonormal

basis of the subspace encoding a particular problem or a query, then

this projection operator is capable of solving the property or problem

it was encoded to solve in a single run. All that needs to be done

is apply this projection “filter” to a state encoding some arbitrary

problem instance.

Let me demostrate this by an example which is a generalized

Deutsch algorithm. Consider arbitrary binary functions of n classical

bits. Suppose an unknown arbitrary such function is given, and

suppose that the question is not which function exactly it is, but

about a relational property which for instance refers to “common”

or “different” properties of functions of this class; say parity.

How could one find such a particular property without having

to identify the respective function completely? It is not too diffi-

cult to argue that there are 2n possible arguments and 22
n

such

binary functions of n bits. For the sake of a reasonable “small”

demonstration, take n = 2 (n = 1 amounts to Deutsch’s problem;

cf. Refs. [23, Section 2.2; 41, Section 1.4.3]). Table 16.1 enumerates

all binary functions of two classical bits. (At this point we are not

dealing with questions of enlarging the Hilbert space to obtain overall

reversibility in case the functions are not reversible.)

In the next step, a system of vectors |ei〉 is obtained by identifying

the valuations of the functions on the respective bit values with

entries in coordinate tuples, as enumerated in the second to last

column of Table 16.1. Based on these vectors an orthonormal

basis of a (subspace) of a high-dimensional Hilbert space can be
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Table 16.1. The 16 binary functions of two classical bits.

f# 00 01 10 11 Corresponding vector Vector after dimensional lifting (20 dimensions)

f1 0 0 0 0 |e1〉 =
(
0, 0, 0, 0

)ᵀ |b1〉 =
(
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f2 0 0 0 1 |e2〉 =
(
0, 0, 0, 1

)ᵀ |b2〉 =
(
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f3 0 0 1 0 |e3〉 =
(
0, 0, 1, 0

)ᵀ |b3〉 =
(
0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f4 0 0 1 1 |e4〉 =
(
0, 0, 1, 1

)ᵀ |b4〉 =
(
0, 0, 1, 1, 0,−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f5 0 1 0 0 |e5〉 =
(
0, 1, 0, 0

)ᵀ |b5〉 =
(
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f6 0 1 0 1 |e6〉 =
(
0, 1, 0, 1

)ᵀ |b6〉 =
(
0, 1, 0, 1, 0,−1, 0,−2,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f7 0 1 1 0 |e7〉 =
(
0, 1, 1, 0

)ᵀ |b7〉 =
(
0, 1, 1, 0, 0, 0,−1,−2,−1,−6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f8 0 1 1 1 |e8〉 =
(
0, 1, 1, 1

)ᵀ |b8〉 =
(
0, 1, 1, 1, 0,−1,−1,−4,−1,−12,−84, 1, 0, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f9 1 0 0 0 |e9〉 =
(
1, 0, 0, 0

)ᵀ |b9〉 =
(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

)ᵀ

f10 1 0 0 1 |e10〉 =
(
1, 0, 0, 1

)ᵀ |b10〉 =
(
1, 0, 0, 1, 0,−1, 0,−2, 0,−6,−40,−3442,−1, 1, 0, 0, 0, 0, 0, 0

)ᵀ

f11 1 0 1 0 |e11〉 =
(
1, 0, 1, 0

)ᵀ |b11〉 =
(
1, 0, 1, 0, 0, 0,−1,−2, 0,−4,−30,−2578,−1,−8874706, 1, 0, 0, 0, 0, 0

)ᵀ

f12 1 0 1 1 |e12〉 =
(
1, 0, 1, 1

)ᵀ |b12〉 =
(
1, 0, 1, 1, 0,−1,−1,−4, 0,−10,−70,−6020,−1,−20723712, ·, 1, 0, 0, 0, 0)ᵀ

f13 1 1 0 0 |e13〉 =
(
1, 1, 0, 0

)ᵀ |b13〉 =
(
1, 1, 0, 0, 0, 0, 0, 0,−1,−2,−14,−1202,−1,−4137858, ·, ·, 1, 0, 0, 0)ᵀ

f14 1 1 0 1 |e14〉 =
(
1, 1, 0, 1

)ᵀ |b14〉 =
(
1, 1, 0, 1, 0,−1, 0,−2,−1,−8,−54,−4644,−1,−15986864, ·, ·, ·, 1, 0, 0)ᵀ

f15 1 1 1 0 |e15〉 =
(
1, 1, 1, 0

)ᵀ |b15〉 =
(
1, 1, 1, 0, 0, 0,−1,−2,−1,−6,−44,−3780,−1,−13012562, ·, ·, ·, ·, 1, 0)ᵀ

f16 1 1 1 1 |e16〉 =
(
1, 1, 1, 1

)ᵀ |b16〉 =
(
1, 1, 1, 1, 0,−1,−1,−4,−1,−12,−84,−7222,−1,−24861568, ·, ·, ·, ·, ·, 1)ᵀ

Note: Dots as vector components represent “very large” numbers.
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effectively generated by dimensional lifting,57 so that |ei〉 �→ |bi〉
with 〈bi|bj〉 = δij and i, j = 1, . . . , 16 as enumerated (without

normalization) in the last column of Table 16.1. Thereby the zero

vector |e1〉 can, for instance, be ad hoc mapped into a subspace of

this larger dimensional Hilbert space which is orthogonal to all other

subspaces (this may be achieved by adding another dimension). Note

that

(i) In general, dimensional lifting is not unique — there exists

other, rather inefficient methods58 (with respect to the number

of auxiliary extra dimensions) to orthogonalize the vectors

corresponding to the functions fi.

(ii) Dimensional lifting does not correspond to a unitary trans-

formation as it intentionally changes the inner products (to

become zero) in transit to higher dimensions. Therefore, if one

attempts to encode this kind of problems into orthogonal bases

of subspaces of higher dimensional Hilbert spaces one needs to

take care of orthogonality from the very beginning. That is,

there has to be a physically feasible way to map the functions

fi into |bi〉.
(iii) Accordingly, any way to map the 16 functions fi into any kind

of system of orthogonal vectors suffices for this method as long

as it is physically feasible.

In the final step a filter is designed which models the binary

question by projecting the answers onto the appropriate subspace of

the (sub)space spanned by the orthonormal basis
{|b1〉, . . . , |b16〉

}

such that the question can be answered in a single query.

Suppose the question is to find the parity of a function fi(x, y) ∈
{0, 1}) with x, y ∈ {0, 1}, i ∈ {1, . . . , 16}. All we need to do is

to partition the functional space
{
f1, . . . , f16

}
into functions with

an even or an odd number of outputs “1”. More explicitly, for the

functions enumerated in Table 16.1 and for parity, the partition is

{{
f2, f3, f5, f8, f9, f12, f14, f15

}
,
{
f1, f4, f6, f7, f10, f11, f13, f16

}}
,

(16.1)
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corresponding to the orthogonal projection operators

E1 = |b2〉〈b2|+ |b3〉〈b3|+ |b5〉〈b5|+ |b8〉〈b8|
+ |b9〉〈b9|+ |b12〉〈b12|+ |b14〉〈b14|+ |b15〉〈b15|, and

E0 = 1− E1 = |b1〉〈b1|+ |b4〉〈b4|+ |b6〉〈b6|+ |b7〉〈b7|
+ |b10〉〈b10|+ |b11〉〈b11|+ |b13〉〈b13|+ |b16〉〈b16|. (16.2)

The parity of an unknown given binary function of two bits can

be obtained by a single query measuring the propositional “parity

property” associated with the observable E1 = 1 − E0. In principle

this method can be generalized to the parity problem of binary

functions of n bits, utilizing a parallelization of the order of 22
n
at

the cost of expanding Hilbert space to about twice this number of

dimensions. It remains to be seen whether this method violates the

assumptions in Ref. [59]. In any case it should be noted that parity is

an example of a much wider problem class associated with relational

properties which can be represented or parametrized by partitioning

appropriate subspaces of Hilbert space.

16.5. Entanglement as Relational Parallelism Across

Multi-Partite States

From a purely formal point of view, entangled particles are modeled

by the indecomposability of state vectors in a Hilbert space which

is a non-trivial tensor product of two or more Hilbert spaces.

Indecomposability means that the respective state vector cannot

be decomposed into a single product of factors of the states of the

constituent particles. Instead, an entangled state can be written as

the coherent superposition (aka linear combination) of such product

states.

This immediately suggests that whenever such indecomposable

vectors occur they can be “rotated” by unitary transformations into

a single product form; say a vector of the Cartesian standard basis in

the respective tensor product of two or more Hilbert spaces. Any such

transformation cannot be expected to be acting “locally” in a single
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constituent space but rather “globally” across the single constituent

spaces.

Physically this means that we are not dealing with single-

particle properties but again with relational properties; whereby

relational information is encoded across the multiple constituents of

such a state.17, 60 This can be expected: as unitary transformations

are defined by rotations transforming some orthonormal basis into

another orthonormal basis61 this amounts to a kind of “zero-sum

game” between localized information aka properties on individual

constituents on the one hand, and relational information which

for instance refers to “common” or “different” properties within

collectives or groups of constituents on the other hand.

16.6. On Partial Views of Vectors

In the context of state purification the following more general

question arises: What kind of value might a partial knowledge of

or about a vector have? After all, embedded observers11 may obtain

only partial knowledge and control of the degrees of freedom entailed

by overseeing a “small” subset of a “much larger” Hilbert space they

inhabit.

Suppose an observer has acquired knowledge about an incomplete

list of components (relative to a particular basis) of a pure state

vector. This can be formalized either by a projection of this vector

onto a subspace of the Hilbert space or by “extraction” of the

coordinates by the respective vectors of the dual basis of the dual

space.

One possibility would be to “complete” the state vector by

various procedures, such as the aforementioned purification. Alter-

natively one might consider the subspace spanned by both the given

and the missing basis elements.62

16.7. Summary

I have presented a revisionist glance at quantum computation as

seen from an equally revisionist perspective on quantum theory. The

main télos, that is, the end, purpose, or goal, of these considerations
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rests in the emphasis that only with a proper understanding of the

quantum physical resources it is possible to develop a comprehensive

theory of quantum information and computation.

For instance, the mere communal or individual canonical believe

in ontological quantum randomness — without mentioning the

implicit assumptions or corroborations which are essentially based

upon incapacity; that is the experience that nobody so far has

come up with any causes and necessary and sufficient reasons for

quantum outcomes — suggests that any such claims need be viewed

as epistemic, anecdotal and preliminary.

I believe that quantum information and computation are inti-

mately tied to foundational issues. Therefore, such issues need at

least to be kept in mind if one assesses the capacities of quantum

systems to store and process information.
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