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Abstract. Relational quantum queries are sometimes capable to effec-
tively decide between collections of mutually exclusive elementary cases
without completely resolving and determining those individual instances.
Thereby the set of mutually exclusive elementary cases is effectively par-
titioned into equivalence classes pertinent to the respective query. In
the second part of the paper, we review recent progress in theoretical
certifications (relative to the assumptions made) of quantum value inde-
terminacy as a means to build quantum oracles for randomness.
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1 Quantum (Dis-)advantages

Genuine quantum computations will be with us for a long time to come, because
the miniaturization of electronic circuits is pushing the processor physics into the
coherent superposition/complementarity /entanglement/value-indefinite regime
(which has no sharp boundary just as the quantum—classical separation is fuzzy
and means dependent). Moore’s law, insofar as it relates to classical “paper
and pencil” [45, p. 34] computation, has reached its effective bottom ceiling
approximately ten to five years ago; this is due to exhaustion of minimization
with respect to reasonably cooling, as well as by approaching the atomic scale.
Most recent performance increases are due to parallelization (if possible).

Alas, this upcoming kind of “enforced” quantum domain computing, imag-
ined by Manin, Feynman, and others, still poses conceptual, theoretical and tech-
nological challenges. Indeed, contemporary quantum information theory appears
to be far from being fully comprehended, worked out and mature. It is based
on quantum mechanics, a theory whose semantics has been notoriously debated
almost from its inception, while its syntax — its formalism, and, in particular, the
rules of deriving predictions — are highly successful, accepted and relied upon.
Depending on temperament and metaphysical inclination, its proponents admit
that nobody understands quantum mechanics [13,21], maintain that there is
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no issue whatsoever [18,22], one should not bother too much [10,14] about its
meaning and foundations, and rather shut up and calculate [30,31].

By transitivity or rather a reduction, quantum information theory inher-
its quantum mechanics’ apparent lack of consensus, as well as a certain degree
of cognitive dissonance between applying the formalism while suffering from
an absence of conceptual clarity [33], Strong hopes, claims and promises [1-
3,16,17,41] of quantum “supremacy” [46] are accompanied by the pertinent ques-
tion of what exactly, if at all, could make quantum information and computation
outperform classical physical resources. Surely many nonclassical quantum fea-
tures present themselves as being useful or decisive in this respect; among them
complementarity, coherence (aka parallelism), entanglement, or value indetermi-
nacy (aka contextuality). But if and how exactly those features will contribute
or enable future algorithmic advances still remains to be seen.

The situation is aggravated by the fact that, although the quantum formalism
amounts to linear algebra and functional analysis, some of its most important
theorems are merely superficially absorbed by the community at large: take, for
example, Gleason’s theorem [23], and extensions thereof [8,36]. Another exam-
ple is Shor’s factoring algorithm [35, Chapter 5] whose presentations often suffer
from the fact that its full comprehension requires a nonsuperficial understanding
of number theory, analysis, as well as quantum mechanics; a condition seldom
encountered in a single (wo)man. Moreover, often one is confronted with con-
fusing opinions: for instance, the claim that quantum computation is universal
with respect to either unitary transformations or first-order predicate calculus
is sometimes confused with full Turing universality. And the plethora of algo-
rithms collected into a quantum algorithm zoo [25] is compounded by the quest
of exactly why and how quantum algorithms may outperform classical ones.

Quantum advantages may be enumerated in four principal groups, reflecting
potential non-classical quantum features:

— quantum parallelism — aka coherent superposition of classically mutually
exclusive bit states, associated with their simultaneous co-representation;

— quantum collectivism — aka entanglement (involving possibly nonlocal corre-
lations) in a multi-particle situation: information is encoded only in relational
properties among particles; individual particles have no definite property;

— quantum probabilities are vector-based (orthogonal projection operators),
resulting in non-classical expectation values rendering different (from clas-
sical value assignments) predictions;

— quantum complementarity: in general quantized systems forbid measurements
of certain pairs of observables with arbitrary precision: “you cannot eat a piece
of the quantum cake & have another one too;”

— quantum value indefiniteness: there cannot exist classical (true/false) value
assignments on certain collections of (intertwining) quantum observables.

In what follows the first and the last feature — parallelism and value indefi-
niteness — will be discussed in more detail.
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2 Suitable Partitioning of Cases

One quantum feature called “quantum parallelism,” which is often presented as a
possible quantum resource not available classically, is the capacity of n quantum
bits to encode 2™ classically mutually exclusive distinct classical bit states at
once, that is, simultaneously: |¥) = Zia " 44]i), where the index i runs through
all 2™ possible combinations of n classically mutually exclusive bit states {0, 1},
|i) are elements of an orthonormal basis in 2"-dimensional Hilbert space, and ;
represent probability amplitudes whose absolute squares sum up to 1.

Quantum parallelism, often presented rather mystically, may formally come
about rather trivially: the alleged simultaneous quantum co-existence of classi-
cally mutually exclusive states is like pretending that a vector in the plane may
simultaneously point in both directions of the plane [17]; a sort of confusion
between a vector and its components. This seemingly absurd co-representability
of contradicting classical states was the motivation for Schrédinger’s cat para-
dox [37]. Note also that, in order to maintain coherence throughout a quan-
tum computation, a de facto exponential overhead of “physical stuff” might be
required. This could well compensate or even outweigh the advantage; that is,
the exponential simultaneous co-representability of (coherent superpositions of)
classical mutually exclusive cases of a computation.

The state |¥) “carrying” all these classical cases in parallel is not directly
accessible or “readable” by any physical operational means. And yet, it can be
argued that its simultaneous representation of classically exclusive cases can be
put to practical use indirectly if certain criteria are met:

— first of all, there needs to be a quantum physical realizable grouping or par-
titioning of the classical cases, associated with a particular query of interest;
and

— second, this aforementioned query needs to be realizable by a quantum
observable.

In that way, one may attain knowledge of a particular feature one is interested in;
but, unlike classical computation, (all) other features remain totally unspecified
and unknown. There is no “free quantum lunch” here, as a total specification
of all observables would require the same amount of quantum queries as with
classical resources. And yet, through coherent superposition (aka interference)
one might be able to “scramble” or re-encode the signal in such a way that some
features can be read off of it very efficiently — indeed, with an exponential (in
the number of bits) advantage over classical computations which lack this form
of rescrambling and re-encoding (through coherent superpositions). However, it
remains to be seen whether, say, classical analog computation with waveforms,
can produce similar advantages.

For the sake of a demonstration, the Deutsch algorithm [32, Chapter 2] serves
as a Rosetta stone of sorts for a better understanding of the formalism and
respective machinery at work in such cases. It is based on the four possible
binary functions f,..., f3 of a single bit € {0,1}: the two constant functions
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fo(x) =1 — f3(x) = 0, as well as the two nonconstant functions: the identity
fi(xz) = x and the not f3(x) = (z + 1) mod 2, respectively. Suppose that one is
presented with a black box including in- and output interfaces, realizing one of
these classical functional cases, but it is unknown which one. Suppose further
that one is only interested in their parity; that is, whether or not the encoded
black box function is a constant function of the argument. Thereby, with respect
to the corresponding equivalence relation of being “(not) constant in the argue-
ment” the set of functions { fo, ..., f3} is partitioned into {{fo, f3}, {f1, f2}}

A different way of looking at this relational encoding is in terms of zero-
knowledge proofs: thereby nature is in the role of an agent which is queried
about a property /proposition, and issues a correct answer without disclosing all
the details and the fine structure of the way this result is obtained.

Classically the only way of figuring this (“constant or not”) out is to input
the two bit-state cases, corresponding to two separate queries. If the black box
admits quantum states, then the Deutsch algorithm presents a way to obtain
the answer (“constant or not”) directly in one query. In order to do this one has
to perform three successive steps [40,44]:

— first one needs to scramble the classical bits into a coherent superposition of
the two classical bit states. This can be done by a Hadamard transformation,
or a quantum Fourier transformation;

— second, one has to transform the coherent superposition according to the
binary function which is encoded in the box. This has to be done while main-
taining reversibility; that is, by taking “enough” auxiliary bits to maintain
bijectivity /permutation; even if the encoding function is many-to-one (eg,
constant).

— third, one needs to unscramble this resulting state to produce a classical
output signal which indicates the result of the query. As all involved transfor-
mations need to be unitary and thus reversible the latter task can again be
achieved by an (inverse) Hadamard transformation, or an (inverse) quantum
Fourier transformation.

This structural pattern repeats itself in many quantum algorithms suggested
so far. It can be subsumed into the three- or rather fivefold framework: “prepare
a classical state; then spread (the classical state into a coherent superposition
of classical states) — transform (according to some functional form pertinent to
the problem or query considered) — fold (into partitions of classical states which
can be accessed via quantum queries and yield classical signals); then detect that
classical signal.”

Besides the (classical) pre- and post-processing of the data, Shor’s algo-
rithm [35, Chapter 5] has a very similar structure in its quantum (order-finding)
core: It creates a superposition of classically mutually exclusive states i via a
generalized Hadamard transformation. It then processes this coherent superpo-
sition of all 4 by computing #* mod n, for some (externally given) x and n, the
number to be factored. And it finally “folds back” the expanded, processed state
by applying an inverse quantum Fourier transform, which then (with high proba-
bility) conveniently yields a piece of classical information (in one register) about
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the period or order; that is, the least positive integer k such that =¥ = 1(mod n)
holds. As far as Shor’s factoring algorithm is concerned, everything else is com-
puted classically.

Partitioning of states may be related to the hidden subgroup problem [35,
Section 5.4.3]: thereby, a function maps from some group to a finite set and is
promised to be constant on cosets of the hidden subgroup. If those cosets are
identified with the transformations “filtering” and “singling out” [15,38-40] the
elements of a partition of states associated with the particular problem, finding
the hidden subgroup may yield an effective way of solving this problem (encoded
by the state partition).

Whether or not this strategy to find “quantum oracles” corresponding to
arbitrary partitions of classical cases is quantum feasible remains to be seen.
There appears to be an ad hoc counterexample, as there is no speedup for gen-
eralized parity [20]; at least with the means considered.

3 Quantum Oracles for Random Numbers

Let me, for the sake of presenting another quantum resource mentioned in the
beginning, contemplate one example for which, relative to the assumptions made,
quantum “computation” outperforms classical recursion theory: the generation
of (allegedly) irreducibly indeterministic numbers; or sequences thereof [7]. A
recent extension of the Kochen-Specker theorem [4,6,8] allowing partial value
assignments suggests the following algorithm: Suppose one prepares a quantized
system capable of three or more mutually exclusive outcomes, formalized by
Hilbert spaces of dimension three and higher, in an arbitrary pure state. Then,
relative to certain reasonable assumptions (for value assignments and noncontex-
tuality), this system cannot be in any defined, determined property in any other
direction of Hilbert state not collinear or orthogonal to the vector associated with
the prepared state [24,36]: the associated classical truth assignment cannot be
a total function. The proof by contradiction is constructive and involves a con-
figuration of intertwining quantum contexts (aka orthonormal bases). Figure 1
depicts a particular configuration of quantum observables, as well as a particular
one of their faithful orthogonal representations [28] in which the prepared and
measured states are an angle arccos (a|b) = arccos {(1, 0,0) 1 (v2,1, 1)1 =7
apart [8, Table1].

Whenever one approaches quantum indeterminacy from the empirical, induc-
tive side, one has to recognize that, without a prior: assumptions, formal proofs
of (in)computability, and more so algorithmic incompressibility (aka random-
ness [29]) are blocked by reduction to the halting problems and similar [43]. The
best one can do is to run tests, such as Borel normality and other criteria, on
finite sequences of random number generators [5,12] which turn out to be consis-
tent with the aforementioned value indefiniteness and quantum indeterminacy.
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b) 2 3

Fig. 1. Greechie orthogonality diagram of a logic [8, Fig.2, p. 102201-8] realizable in
R? with the true-implies—value indefiniteness (neither true nor false) property on the
atoms |a) and |b), respectively. The 8 classical value assignments require |a) to be
false. Therefore, if one prepares the quantized system in state |a), the second state |b)
cannot have any consistent classical value assignment — it must be value indetermi-
nate/indefinite.

4 Afterthoughts on Assumptions

Let me, as a substitute for a final discussion, mention a caveat: as all results
and certifications hold true relative to the assumptions made, different assump-
tions and axioms may change the perceptual framework and results entirely. One
might, for instance, disapprove of the physical existence of states and observ-
ables beyond a single vector or context [9,42]. Thereby, the problem of measuring
other contexts would be relegated to the general measurement problem of coher-
ent superpositions [27]. In this case, as von Neumann, Wigner and Everett have
pointed out, by “nesting” the measurement objects and the measurement appa-
ratus in larger and larger systems [19], the assumption of the universal validity
of the quantum state evolution would result in mere epistemic randomness; very
much like the randomness encountered in, and the second law of [34], classi-
cal statistical physics. From that perspective, quantum randomness might turn
out to be valid “for all practical purposes” [10] through interaction with a huge
number of (uncontrollable) degrees of freedom in the environment of a quan-
tized system in a coherent state, “squeezing” out this coherence very much like
a balloon losing gas [11].
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