
Minimal true-implies-false and true-implies-true sets of propositions in noncontextual
hidden variable theories

Adán Cabello∗

Departamento de F́ısica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
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An essential ingredient in many examples of the conflict between quantum theory and noncon-
textual hidden variables (e.g., the proof of the Kochen-Specker theorem and Hardy’s proof of Bell’s
theorem) is a set of atomic propositions about the outcomes of ideal measurements such that, when
outcome noncontextuality is assumed, if proposition A is true, then, due to exclusiveness and com-
pleteness, a nonexclusive proposition B (resp. C) must be false (resp. true). We call such a set a
true-implies-false set (TIFS) [resp. true-implies-true set (TITS)]. Here we identify all the minimal
TIFSs and TITSs in every dimension d ≥ 3, i.e., the sets of each type having the smallest number
of propositions. These sets are important because each of them leads to a proof of impossibility
of noncontextual hidden variables and corresponds to a simple situation with quantum vs classical
advantage. Moreover, the methods developed to identify them may be helpful to solve some open
problems regarding minimal Kochen-Specker sets.

I. INTRODUCTION

The assumption of outcome noncontextuality is the
assumption that ideal measurements reveal pre-existing
noncontextual outcomes. Kochen and Specker [1–3] and
Bell [4] proved that there is a conflict between out-
come noncontextuality and quantum theory (QT). They
pointed out that, for dimension d ≥ 3, there are sets
of atomic propositions (represented in QT by rays in a
d-dimensional Hilbert space) that do not admit an as-
signment of noncontextual outcomes once we make the
following extra assumptions: (i) Exclusiveness: Exclusive
propositions (represented in QT by orthogonal rays) can-
not be both assigned the value true. (ii) Completeness:
Complete sets of exclusive propositions (represented in
QT by d mutually orthogonal rays) cannot all be assigned
the value false. These sets are called Kochen-Specker
(KS) sets.

It was later pointed out that the conflict between out-
come noncontextuality and QT occurs even without as-
sumptions (i) and (ii). Instead, for some linear combina-
tions of correlations, the assumption of outcome noncon-
textuality, by itself, establishes limits that are violated by
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QT [5, 6]. These limits are called noncontextuality (NC)
inequalities. NC inequalities generalize Bell inequalities
[7] to scenarios were measurements cannot be distributed
between separated parties. The quantum violation of
some NC inequalities reveal that the conflict also occurs
for single particles prepared in arbitrary quantum states
[6, 8–10]. From the perspective of NC inequalities, KS
sets are a particular type of contextuality sets, defined
as sets of observables for which outcome noncontextual-
ity contradicts the quantum predictions. KS sets can be
converted into NC inequalities whose violation reveals
quantum state-independent contextuality [11, 12], into
Bell inequalities with quantum violation saturating the
nonsignaling bound [13, 14], and into proofs of nonlocal-
ity via local contextuality [15–17].

Every linear combination of correlations appearing in
a NC inequality can be expressed as positive linear com-
bination of probabilities of events or propositions and
represented by a graph, called a graph of exclusivity, in
which exclusive propositions are represented by adjacent
vertices. It was later found [18–20] that QT violates a NC
or Bell inequality written this way if and only if its corre-
sponding graph of exclusivity is imperfect, i.e., contains,
as induced subgraphs, odd cycles of length five or more
(i.e., pentagons, heptagons, etc.), or their complements.
Therefore, every proof of contextuality (i.e., impossibility
of assigning pre-existing noncontextual outcomes to ideal
measurements) can be associated to an imperfect graph.
This includes any proof, with or without inequalities, of
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the KS [1–3] and Bell [4] theorems. Reciprocally, every
imperfect graph can be used to prove that QT cannot
be explained with noncontextual hidden variable theo-
ries [18, 19].

Interestingly, the sets of propositions represented by
some specific imperfect graphs allow us to present the
conflict between QT and hidden variables in a very ap-
pealing way, namely, by pointing out a contradiction be-
tween QT and a prediction with certainty of the non-
contextual hidden variable theory. Proofs of this type
have been presented by Stairs [21], Hardy [22], and oth-
ers [23–26]. In addition, these imperfect graphs play a
fundamental role in the proofs of the KS theorem of Bell
[4] and Kochen and Specker [3] and in some other proofs
of quantum state-independent contextuality [9, 27]. The
purpose of this paper is to identify the minimal (i.e., hav-
ing the smallest set of vertices) of these imperfect graphs
for any dimension and explain how they are related to
previous proofs of impossibility of noncontextual hidden
variables.

Hereafter, by atomic propositions we will mean state-
ments the form “outcomes o1 and o2 will be respectively
obtained when observables O1 and O2 will be jointly mea-
sured on the same physical system,” where O1 and O2 are
assumed to be observables represented in QT by rank-
one projectors that commute. Each atomic proposition
is represented in QT by a ray in a Hilbert space. Two
propositions are exclusive when both cannot be simul-
taneously true. Exclusive propositions are represented
in QT by mutually orthogonal rays. A set of mutually
exclusive propositions constitutes a context. A context
is complete when one of the propositions must be true.
Greechie orthogonality diagrams [28] provide a convenient
way to represent the graphs of exclusivity, as they repre-
sent contexts as single smooth lines (such as circles or
straight unbroken lines) connecting mutually (atomic)
exclusive propositions, which are represented as small
circles; contexts intertwining at a single proposition are
represented as nonsmoothly connected lines, broken at
that proposition. For better readability non-intertwining
atoms belonging to just one context are not depicted.
The assumption of outcome noncontextuality assigns the
same truth value (true or false) to any proposition with
independence of the context.

II. TRUE-IMPLIES-FALSE AND
TRUE-IMPLIES-TRUE SETS

We define a true-implies-false set (TIFS) [resp. true-
implies-true set (TITS)] as a set S (resp. S′) of proposi-
tions represented in QT by rays in a Hilbert space such
that, when outcome noncontextuality is assumed, due to
exclusiveness and completeness, if proposition A ∈ S is
true, then a nonexclusive proposition B ∈ S must be false
[resp. a nonexclusive proposition C ∈ S′ must be true].
Explicit examples of a TIFS and a TITS are shown in
Fig. 1(a) and (b), respectively. A TIFS or TITS is said
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FIG. 1. (Color online) Greechie orthogonality diagrams of
the minimal (a) TIFS and (b) TITS in d = 3. Small cir-
cles represent propositions, smooth lines represent complete
sets (i.e., sets in which one and only one of the propositions
must be true); in particular, they indicate that any pair of
propositions connected by a smooth line cannot both be true
(exclusiveness). (a) If A is true then B is false [2]. (b) If A is
true then C is true [3]. These sets are realizable in S2 by tak-
ing, for instance, vA = (1, 1, 1)/

√
3, v1 = (1,−1, 0)/

√
2, v2 =

(1, 0,−1)/
√

2, v3 = (0, 0, 1), v4 = (0, 1, 0), v5 = (1, 1, 0)/
√

2,
v6 = (1, 0, 1)/

√
2, vB = (−1, 1, 1)/

√
3, v7 = (0, 1,−1)/

√
2,

C = (2, 1, 1)/
√

6. In QT, the proposition vi is represented by
the projector |vi〉〈vi|. To obtain a TIFS or a TITS in d = 4
it is enough to add 〈v| = (0, 0, 0, 1), and similarly to obtain
TIFS or TITSs in higher dimensions [29].

to be critical if the set resulting from removing any el-
ement is not a TIFS or TITS, respectively. A TIFS or
TITS in dimension d is said to be minimal if there are
not TIFS or TITS, respectively, with less propositions in
dimension d.

Any TIFS or TITS, by itself, constitutes a proof of
quantum contextuality, since, for a system prepared in
the quantum state in which proposition A is true, there
is a nonzero probability of finding proposition B or C
true and false, respectively. This is, in fact, the method
followed in the proofs of quantum contextuality by Stairs
[21], Clifton [23], and Cabello et al. [25, 26]. All these
proofs can be then converted into experimental tests of
whether or not nature can be described with noncontex-
tual hidden variable theories [24].

TITSs also serve to prove the KS theorem in any given
dimension d ≥ 3, since, by suitably concatenating sev-
eral TITSs, one can obtain a set for which noncontextual
outcomes satisfying assumptions (i) and (ii) cannot be
assigned. Such a set is called a KS set. This is the
method followed by Bell [7] and Kochen and Specker [3]
to prove the KS theorem in d = 3. The same method can
be extended to any d ≥ 3 [29].

TITS in which proposition A corresponds to an en-
tangled state and the rest corresponds to product states
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can be used to prove Bell’s theorem (i.e., the impossibil-
ity of reproducing QT with local hidden variable theo-
ries). This is exactly what is behind Hardy-like proofs of
quantum nonlocality [22] (for a detailed explanation, see
Ref. [30]).

TITSs are known for any physical system described by
a Hilbert space of dimension d ≥ 3 [2, 4]. In d = 3, Bell
found one with n = 13 propositions [4] and KS found
one with n = 10 [3], which is illustrated in Fig. 1(b).
Both Bell’s and KS’s sets belong to a broader family with
n = 10 + 3m propositions, with m = 0, 1, . . . [26]. For
d > 3, TITS with n = 7 + d are easy to construct from
the set of Fig. 1 by adding the vector with all components
zero but the one corresponding to the new dimension [26].
However, the problem of which are the minimal TIFSs
and TITSs for any d ≥ 3 is open. This is the problem we
address in this paper.

III. METHOD FOR OBTAINING MINIMAL
TIFSS AND TITSS

A TITS can be also represented by a graph of exclusiv-
ity in which d-cliques (i.e., d mutually adjacent vertices)
represent complete contexts. A graph is said to be non-
realizable in dimension d if it represents a set of rays that
is not realizable in Sd−1.

Lemma 1 [20]: The simplest nonrealizable graph of ex-
clusivity in d = 1 consists of two vertices. The simplest
nonrealizable graph of exclusivity in d = 2 has three ver-
tices with one of them adjacent to the other two. From
these to nonrealizable graphs one can recursively con-
struct nonrealizable graphs in any dimension d by start-
ing from the nonrealizable graph in dimension d− 2 and
adding to it two vertices adjacent to all vertices of the
nonrealizable graph in d− 2.

Lemma 2: Every n-vertex graph of exclusivity corre-
sponding to a critical TITS in dimension d contains a
(n + 1 − d)-vertex graph of exclusivity corresponding to
a TIFS.

Proof: Let be G a graph of exclusivity corresponding
to a TITS in which A true implies C true. Then, every
vertex adjacent to C must be false. Then, the induced
subgraph of G obtained by removing C and any vertex
adjacent both to A and C is a TIFS in which A true
implies B false, where B was adjacent to C, but not to
A.

Lemma 3: The graph of exclusivity of a critical TIFS
must be biconnected (i.e., it is connected and such that,
when removing any vertex, the resulting graph remains
connected).

Proof: Suppose that it is not biconnected. Then, there
is, at least, one vertex such that, after removing it, the
resulting graph has two unconnected components. If the
true and false vertices are in the same component, then
this component is a TIFS and, therefore, the original
graph of exclusivity is not critical. If the true and false
vertices are in different components, then either the re-

moved vertex is false and the component with the true
plus the removed vertex form a TIFS, or the removed ver-
tex is not false and the component with the false plus the
removed vertex form a TIFS. In both cases, the original
graph of exclusivity is not critical.

Corollary 1: Every vertex of a graph of exclusivity
corresponding to a TIFS must be adjacent to, at least,
two other vertices (i.e., the graph must have minimal
valency two).

Lemma 4: Every graph of exclusivity corresponding to
a TIFS in dimension d contains, at least, two d-cliques
(each of them represented by a d-vertex complete graph,
i.e., a graph in which all vertices are adjacent).

Proof: Let be G a graph of exclusivity corresponding to
a TIFS and A and B the true and false vertices, respec-
tively. There must be another true vertices X1, . . . , Xp.
Let be W = V (G) − {A,B,X1, . . . , Xp}, where V (G) is
the set of vertices of G. We consider two cases. (a) Every
vertex in W belong to the set of vertices of G that are
adjacent to A, denoted N(A), and B and some Xi are
adjacent. In this case, A ∪N(A) and b ∪N(b) form two
complete sets. (b) Not all vertices in W belong to N(A).
Then, all the vertices in W are false. However, these false
vertices are not adjacent to A, so their value false must
be forced by some other true vertex Xj . This vertex is
not adjacent to A, so it has to belong to a d-clique.

IV. DIMENSION 3. SPECKER’S “BUG”

To obtain the minimal TITS in d = 3, we combine the
previous results as follows:

Step 1: We generate all nonisomorphic n-vertex bicon-
nected graphs (Lemma 3) of minimal valence two (Corol-
lary 1), not containing cycles on length four (Lemma 1),
and containing at least two triangles (Lemma 4), with
n ≤ 8. This can be efficiently done using the computer
program nauty [31]. We obtain that there are two such
graphs for n = 7 and eight graphs for n = 8. Their corre-
sponding Greechie orthogonality diagrams are shown in
Fig. 2.

Step 2: For every graph obtained after step 1, consider
all possible pairs of vertices (vi, vj). If, for one (vi, vj),
the graph does not admit a noncontextual assignment
when vi = 1 and vj = 1 (i.e., then both are true), then
the graph is the graph of exclusivity a TIFS in which
A = vi and B = vj . The test of whether or not a graph
admits a noncontextual assignment can be done using a
simple computer program (e.g., [32]).

After step 2, we find that only the last graph in Fig. 2
corresponds to a TIFS. This graph, also depicted in
Fig. 1(a), was first introduced by Kochen and Specker [2,
Fig. 1, p. 182]; and later used as a subgraph of the graph
Γ1 of Kochen and Specker [3], as depicted in Fig. 1(b).
Specker referred to this graph as the “bug.” This proves
that, in d = 3, there is no TIFS with a smaller number
of propositions than the one introduced by Kochen and
Specker in 1965 has. This implies, by Lemma 2, that
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FIG. 2. (Color online) Greechie orthogonality diagrams of
all nonisomorphic 7-vertex (first row) and 8-vertex (the re-
maining rows) biconnected graphs of minimal valence two,
not containing cycles of length four, and containing at least
two triangles.

there is no TITS with a smaller propositions than the
one whose Greechie orthogonality is shown in Fig. 1(b).

Orthogonal representations of the minimal TIFS and
TITS are presented in the caption Fig. 1. An orthogo-
nal representation of a graph is a set of unit vectors in
one-to-one correspondence with the vertices of the graph
and such that adjacent vertices are associated orthogonal
vectors. It can be easily shown that the minimum angle
between the vectors corresponding to vertices A and B
is arccos

(
1
3

)
[33, 34]. It is interesting to notice that the

orthogonal representation of one of the pentagons de-
termines univocally the orthogonal representation of the
graph of exclusivity corresponding to a TIFS. This can be
seen as follows: Suppose we have the vectors correspond-
ing to A, v1, v2, v3 and v4. Then, v5 is the vector product
of v1 and v3. Similarly, v6 is the vector product of v2
and v4, and B is the vector product of v5 and v6. Also
v7 is the vector product of A and B, and C is the vector
product of B and v7. Notice also that three nonconsec-
utive vertices of the pentagon univocally determine the
orthogonal representation of the graph of exclusivity.

The state-independent contextuality set with the
smallest number of atomic propositions in d = 3 (and
in any dimension d [27]), the Yu-Oh set [9], contains 6
TIFSs like the one in Fig. 1(a). This is shown in Fig. 3.

v3

v5

B

v6
v4

v2

A

v1

FIG. 3. (Color online) Greechie orthogonality diagram of
the simplest quantum state-independent contextuality set in
d = 3 (and in any d) [27], the Yu-Oh set [9]. It contains six
TIFSs like the one in Fig. 1(a). One of them is indicated using
the same notation used in Fig. 1(a).

V. DIMENSION 4. THE TIFS IN HARDY’S
PROOF AND OTHER RELATED TIFSS

As in the previous section, after an exhaustive com-
puter search, we have obtained that there are only three
TIFS in d = 4 with a minimum number of propositions,
nine. Their Greechie orthogonality diagrams are depicted
in Fig. 4. All three are realizable in S3 by taking, e.g.,
for Fig. 4(a), A = (0,−1,

√
2, 0)/

√
3, v1 = (1,

√
2, 1, 0)/2,

v2 = (1, 0, 0, 0), v3 = (1, 0,−1, 0)/
√

2, v4 = (0, 1, 0, 0),

v5 = (−1,
√

2,−1, 0)/2, v6 = (0, 0, 1, 0), v7 = (0, 0, 0, 1),

B = (
√

1− ε2/
√

3)(
√

2, 1, 0, 0)+ε(0, 0, 0, 1); for Fig. 4(b),

A = (
√

1− ε2/
√

3)(0,−1,
√

2, 0) + ε(0, 0, 0, 1), B =

(
√

2, 1, 0, 0)/
√

3, and vi as for Fig. 4(a); for Fig. 4 (c),

A = (0,−1,
√

2, 0)/
√

3, B = (
√

2, 1, 0, 0)/
√

3, and vi as
for Fig. 4(a). For the three graphs of exclusivity, the
orthogonal representations in d = 4 are almost unique
(except for an ε value). It can be easily shown that the
minimum angle between the vectors corresponding to A

and B is arccos
(

1−ε2
3

)
for the cases in Fig. 4(a) and (b),

and arccos
(
1
3

)
for the case in Fig. 4(c).

VI. MINIMAL TIFSS AND TITS IN HIGHER
DIMENSIONS

Theorem 2: Let be G the graph of exclusivity cor-
responding to a minimal TIFS in dimension d, then
|V (G)| = d + 5.

Proof: First, we prove |V (G)| ≥ d + 5 by induction.
For dimensions 3 and 4 the theorem has been proven in
previous sections. For d > 4, we know, from Lemma 4,
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FIG. 4. (Color online) Greechie orthogonality diagrams of
the three minimal TIFS in d = 4. The one in (a) appears
in Hardy’s proof of Bell’s theorem [22] (see details in Refs.
[30, 33, 35]).

that every graph of exclusivity corresponding to a TIFS
in dimension d contains, at least, two d-cliques. Suppose
there is a graph of exclusivity corresponding to a TIFS
in dimension d with less than d+ 5 vertices. It is easy to
verify that it can not contain three d-cliques, since this
would imply the existence of graphs which are forbidden
in dimension d (see Lemma 1). Then, the two unique
d-cliques of the graph must have a common vertex. By
removing that common vertex, we obtain a graph of ex-
clusivity corresponding to a TIFS in dimension d−1 with
|V (G)| = d + 4, which contradicts the hypothesis of in-
duction.

In order to prove that |V (G)| ≤ d + 5 it suffices to
found minimal TIFSs with |V (G)| = d + 5. Let be G
a graph of exclusivity corresponding to a minimal TIFS
in dimension d > 4. Applying induction, we can verify
that G can be obtained from some graph of exclusivity
H corresponding to a minimal TIFS in dimension d −
1 to adding a vertex v adjacent to the vertices of the
two d-cliques of H. The vertex v may or may not be
adjacent to the vertices A (true) and B (false), but A
and B must be each of them adjacent to at least one of
the vertices common to the two d-cliques of H, because if
this condition were not given one of the common vertices
to both d-cliques of G could take the value true and B
could take it too. See Fig. 5 and Fig 7 with examples in
dimension 5 and 6.

For each dimension, the graphs obtained with this
method such that the new vertices are always adjacent
to A and B are realizable in dimension d by taking, e.g.,
A = (0,−1,

√
2, 0, . . . , 0)/

√
3, v1 = (1,

√
2, 1, 0, . . . , 0)/2,

v2 = (1, 0, 0, 0, . . . , 0), v3 = (1, 0,−1, 0, . . . , 0)/
√

2,

v4 = (0, 1, 0, 0, . . . , 0), v5 = (−1,
√

2,−1, 0, . . . , 0)/2,

A

v2

v1

v4

v3

v6

v5

B

v7 v8
A

v2

v1

v4

v3

v6

v5

B

v7 v8

(a) (b)
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v4

v3

v6

v5

B
v7 v8
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v3

v6

v5

B

v8v7

(c) (d)

FIG. 5. (Color online) Greechie orthogonality diagrams of
the four minimal TIFS in d = 5. All of them have 10 propo-
sitions and 9 contexts.

v6 = (0, 0, 1, 0, . . . , 0), B = (
√

2, 1, 0, 0, . . . , 0)/
√

3, v7 =
(0, 0, 0, 1, . . . , 0),. . . , vd+3 = (0, 0, 0, 0, . . . , 1).

Due to this construction, note that: (i) Orthogonal
representations are almost (except for ε value) unique
for all the graphs of exclusivity corresponding to minimal
TIFSs in the same dimension. (ii) the minimum angle for
all the graphs of exclusivity corresponding to minimal
TIFSs is larger than or equal to arccos

(
1
3

)
, being able to

approach this bound everything we want and being the
value achievable when the common vertices to the two d-
cliques are all adjacent simultaneously to A and B. We
will give an explicit orthogonal representation for all the
graphs of exclusivity corresponding to minimal TIFSs of
dimensions 5 and 6 at the end of this section. The general
construction for any dimension is immediate from these
examples.

As all the graphs of exclusivity corresponding to min-
imal TIFSs can be found by a constructive method, we
can count them. The number of minimal TIFSs in dimen-
sion 3, 4, 5, 6, 7, 8, . . . is 1, 3, 4, 8, 13, 19, . . .. The number
of minimal TIFSs in dimension d = 3, 4 is (d−1)(d−2)/2.
In higher dimensions (d ≥ 5) the number of minimal

TIFS is (d−1)(d−2)
2 −2. To count the number of graphs of

exclusivity corresponding to minimal TITSs, note that
the vertices added in the construction form a (d − 3)-
clique. It suffices then to count the possible connections
(except isomorphisms) between the vertices of the (d−3)-
clique and the vertices A (true) and B (false). Each
vertex of the (d − 3)-clique can have 3 different and in-
compatible states (adjacent to true, adjacent to false or
adjacent to both), we have combinations with repetition
of 3 elements taken in groups of d − 3. This provides
CRd−3

3 =
(
d−1
d−3

)
=

(
d−1
2

)
= (d − 1)(d − 2)/2, where CR

stands for combinations with repetition. If the dimension
is larger than 4, it is necessary to eliminate the graphs
where all vertices of the (d− 3)-clique are adjacent only
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A

v2

v1

v4

v3

v6

v5

Bv7
. . . vd+3

C

vd+4

FIG. 6. (Color online) Scheme for constructing a minimal
TITS with d + 7 propositions in dimension d. The subgraph
{A,B, v1, . . . , vd+5, B} corresponds to a minimal TIFS. If A
is true then B is false and also v7, . . . , vd+3, and vd+4 are
false. Therefore, since {v7, . . . , vd+3, vd+4, B,C} are mutually
exclusive, then C must be true.

to A or only to B obtaining (d−1)(d−2)
2 − 2.

Theorem 3: Minimal TITS have d + 7 propositions in
dimension d ≥ 3.

Proof: Suppose that the minimal TITS has less than
d+7 propositions and that A true implies C true. There-
fore, the true of C is forced by a d-clique. Then, at least
one of the vertices of this d-clique, say vertex u, is not
adjacent to A. Otherwise, a forbidden subgraph would
appear. Therefore, we can remove the vertex C and all
the vertices of the d-clique, except u, and construct a
TIFS (A true implies u false) with less than d + 5 ver-
tices, and this is in contradiction with Theorem 2. On
the other hand, the addition of two vertices to the graph
of exclusivity corresponding to the minimal TIFS in di-
mension d, as shown in Fig. 6, provides a minimal TITS
with d + 7 propositions in dimension d ≥ 3.

Corollary 2: The graphs of exclusivity corresponding
to the minimal TITSs with d + 7 propositions contains
exactly three d-cliques.

A. Dimension 5

We have obtained that there are four TIFSs with
a minimum number of propositions in d = 5. Their
Greechie orthogonality diagrams are shown in Fig. 5.
These TIFSs are realizable in S4 by taking, e.g.,
for Fig. 5(a), A = (

√
1− ε2/

√
3)(0,−1,

√
2, 0, 0) +

ε(0, 0, 0, 0, 1), v1 = (1,
√

2, 1, 0, 0)/2, v2 = (1, 0, 0, 0, 0),

v3 = (1, 0,−1, 0, 0)/
√

2, v4 = (0, 1, 0, 0, 0), v5 =

(−1,
√

2,−1, 0, 0)/2, v6 = (0, 0, 1, 0, 0), v7 = (0, 0, 0, 1, 0),

v8 = (0, 0, 0, 0, 1), B = (
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0) +

ε(0, 0, 0, 1, 0); for Fig. 5(b), A = (0,−1,
√

2, 0, 0,)/
√

3,

B = (
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0) + ε(0, 0, 0, 1, 0),
and vi as for Fig. 5(a); for Fig. 5(c), A =

(
√

1− ε2/
√

3)(0,−1,
√

2, 0, 0) + ε(0, 0, 0, 1, 0), B =

(
√

2, 1, 0, 0, 0)/
√

3, and vi as for Fig. 5(a); for Fig. 5(d),

A = (0,−1,
√

2, 0, 0)/
√

3, B = (
√

2, 1, 0, 0, 0)/
√

3, and vi
as for Fig. 5(a). Notice that the orthogonal represen-
tations are almost unique (except for an ε value). The

minimum angle between the vectors corresponding to A

and B is arccos
(

1−ε2
3

)
for all the cases in Fig. 5 except

for case (d), that is arccos
(
1
3

)
.

B. Dimension 6

We have obtained that there are eight TIFS with
a minimum number of propositions in d = 6. Their
Greechie orthogonality diagrams are shown in Fig. 7. All
of them are realizable in S5 by taking, e.g., for Fig. 7(a),

A = (
√

1− ε2/
√

3)(0,−1,
√

2, 0, 0, 0) + ε(0, 0, 0, 0, 0.1),

v1 = (1,
√

2, 1, 0, 0, 0)/2, v2 = (1, 0, 0, 0, 0, 0),

v3 = (1, 0,−1, 0, 0, 0)/
√

2, v4 = (0, 1, 0, 0, 0, 0),

v5 = (−1,
√

2,−1, 0, 0, 0)/2, v6 = (0, 0, 1, 0, 0, 0),
v7 = (0, 0, 0, 1, 0, 0), v8 = (0, 0, 0, 0, 1, 0), v9 =

(0, 0, 0, 0, 0, 1), B = (
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0, 0) +

(ε/
√

2)(0, 0, 0, 1, 1, 0); for Fig. 7(b), A =

(
√

1− ε2/
√

3)(0,−1,
√

2, 0, 0, 0) + (ε/
√

2)(0, 0, 0, 0, 1, 1),

B = (
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0, 0) + ε(0, 0, 0, 1, 0, 0),
and the remaining vi as for Fig. 7(a); for

Fig. 7(c), A = (0,−1,
√

2, 0, 0, 0)/
√

3, B =

(
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0, 0) + (ε/
√

2)(0, 0, 0, 1, 1, 0),
and the remaining vi as for Fig. 7(a); for Fig. 7(d), A =

(
√

1− ε2/
√

3)(0,−1,
√

2, 0, 0, 0) + (ε/
√

2)(0, 0, 0, 0, 1, 1),

B = (
√

2, 1, 0, 0, 0, 0)/
√

3, and vi as for Fig. 7(a);

for Fig. 7(e), A = (
√

1− ε2/
√

3)(0,−1,
√

2, 0, 0, 0) +

ε(0, 0, 0, 0, 0, 1), B = (
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0, 0) +
ε(0, 0, 0, 1, 0, 0), and vi as for Fig. 7(a); for Fig. 7(f),

A = (
√

1− ε2/
√

3)(0,−1,
√

2, 0, 0, 0) + ε(0, 0, 0, 0, 0, 1),

B = (
√

2, 1, 0, 0, 0, 0)/
√

3, and vi as in for Fig. 7(a);

for Fig. 7(g), A = (0,−1,
√

2, 0, 0, 0)/
√

3, B =

(
√

1− ε2/
√

3)(
√

2, 1, 0, 0, 0, 0) + ε(0, 0, 0, 1, 0, 0), and vi
as for Fig. 7(a); for Fig. 7(h), A = (0,−1,

√
2, 0, 0, 0)/

√
3,

B = (
√

2, 1, 0, 0, 0, 0)/
√

3, and vi as for Fig. 7 (a). Notice
that the orthogonal representations are almost unique
(except for an ε value). The minimum angle between

the vectors corresponding to A and B is arccos
(

1−ε2
3

)
for all cases in Fig. 7 except for (h), that is arccos

(
1
3

)
.

VII. OPEN PROBLEMS

Here we have identified the simplest TIFSs and TITSs
in every finite dimension. TIFSs and TITSs are not only
important for themselves, but also because they are re-
lated to some open problems. For example, in Ref. [36]
Peres conjectured that the KS set with the smallest num-
ber of atomic propositions in any dimension is the one in
Ref. [30], with 18 propositions in d = 4. The interme-
diate results we have developed in this paper can help
to prove this conjecture. Other open problem that can
benefit from our results is identifying the KS set in d = 3
with the smallest set of atomic propositions. Curiously,
after more than fifty years, this problem remains open.
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FIG. 7. (Color online) Greechie orthogonality diagrams of the eight minimal TIFs in d = 6. All of them have 11 propositions
and 9 contexts.

Other interesting open problem is identifying the min-
imal true-iff-true sets in every finite dimension d. A true-
iff-true-set (also called nonseparating set) is one that
contains two propositions which must be both true or
both false. This is not the same as in a TITS, as for
a TITS, C true does not imply A true. For d = 3,
a true-iff-true-set was identified in Ref. [3]. These sets
are interesting because they demonstrate an even larger
conflict between QT and noncontextual hidden variable
theories as, although there still exist classical valuations

and truth tables, they are more in contradiction with
QT, up to the point where propositional structures con-
taining these sets cannot be embedded into any kind of
hidden parameter model [3], such as partition logics [37],
and their model realizations as Wright’s generalized urn
model [38], or automaton logic [39] (still allowing logics
with TIFS or TITS). We conjecture that the 17-ray true-
iff-true sets set in Ref. [3] is minimal in d = 3. However,
we do not have a proof.
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