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I. IDENTIFYING QUANTUM PHYSICAL
MEANS FOR COMPUTATION

The hypothesis pursued in this paper is that the power
of quantum computation solely resides in a proper “trans-
lation” of “holistic” properties of functions—manifesting
themselves in the relational values for different elements
of their domain, or of their entire image—into orthogonal
subspaces and their associated perpendicular projections.
This is usually facilitated by quantum parallelism—the
possibility to co-represent and co-encode classically dis-
tinct and mutually exclusive clauses into simultaneous
coherent superpositions thereof. However, in order to
take advantage of parallelism, it is necessary to be able
to analyse the resulting quantum state by suitably chosen
orthogonal projections. In what follows we shall there-
fore attempt to enumerate conditions under which a given
algorithmic task can be quantum mechanically encoded
into orthogonal subspaces, thereby identifying criteria for
potential quantum speedups.
This paper is organized as follows: after a brief and

somewhat iconoclastic exposition of the standard quan-
tum formalism (which may be amusing to some but con-
sidered to be superfluous by others) strategies to encode
properties of computable functions into orthogonal sub-
spaces are discussed. This involves the possibility to or-
thogonalise non-orthogonal vectors of some initial Hilbert
space by interpreting them as orthogonal projections of
mutually orthogonal vectors in a Hilbert space of greater
dimension.

II. LOCATING QUANTUM RESOURCES

Starting with Plack’s [1] (p. 31) “act of de-
spair” it may not be totally unreasonable to state
that the newly discovered quantum capacities, un-
heard of in classical continuum mechanics, caused shock
and awe among some of the most prominent creators of
quantum mechanics. Most notably Schrödinger strug-
gled with quantum coherence, today known as quantum
parallelism, throughout his entire life, bringing forward
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seemingly absurd consequences of the formalism, such as
the cat paradox, or quantum jellification [2]. In the same
series of papers [3] he also mentioned the capacity that
multiple quanta may be entangled; a resource related to
quantum non-locality, which was put forward by Einstein
on various occasions [4, 5] to question the consistency of
quantum and relativity theory.

On the formal side, Hilbert space quantum mechan-
ics [6] and, in particular, quantum logic have been con-
ceived [7] as attempts to systematically identify and
study the valid, feasible, operational resources and capac-
ities of quantized physical systems in terms of algebraic
structures arising in quantum mechanics. Thereby, logi-
cal entities are identified with quantum theoretical terms;
a typical example being the identification with a binary
logical yes-no proposition or property with an orthogonal
projection operator; or, equivalently, with the associated
linear subspace, which, in the one-dimensional case, is
spanned by a single (unit) vector. In what follows some
of these identifications will explicitly be enumerated.

Subsequently, and possibly motivated by single-
quantum experiments which have become experimentally
feasible, quantum information and communication re-
search attempts to exploit mostly non-classical capacities
of quantized systems, such as parallelism, entanglement,
or other quantum resources [8–11]. (A caveat: we refrain
here from a detailed, more comprehensive list of refer-
ences, as this might transcend this brief review.)

A. State as Context

In the Dirac-von Neumann formalism of quantum me-
chanics a pure state is completely characterized by a
unit vector |ψ〉 (or, equivalently, by the associated one-
dimensional subspace spanned by |ψ〉; or by the orthogo-
nal projection operator Eψ = |ψ〉〈ψ|) in a Hilbert space,
which essentially (disregarding completeness) is a vector
space equipped with a scalar product. In what follows
we shall disregard mixed states completely—according to
the Church of the Larger Hilbert Space any mixed state
is purely epistemic (but not ontic), and originates from
some unknown pure state which can be reconstructed,
subject to some (usually non-unique) purification by “re-
verting” (by disclosing “additional information”) the in-
troduction of ignorance (enforced by a non-unitary many-
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to-one state evolution) through partial traces. Every
state will thus assumed to be pure.

Alternatively it may be preferable [12] to define a state
via a context, or, equivalently, an orthonormal basis, or
a maximal observable [13] (§ 84, Theorem 1) whose spec-
tral sum is non-degenerate. Any such context represents
a Boolean subalgebra (formed by mutually orthogonal
and thus commuting projections) of a quantum logic;
a kind of “greatest classical mini-universe” which is co-
prepareable.

B. Observable as Context

Every maximal observable or context corre-
sponds to the non-degenerate spectral sum of one-
dimensional mutually orthogonal (and thus com-
muting) projections whose sum is a resolution of
the identity. Within operational capacities, those
bases can be chosen freely by the experimenter.
They correspond to quasi-classical mini-universes of
mutually commuting, compatible observables.
Once a particular maximal observable is

chosen, the respective orthonormal basis
Bn = {|e1〉, |e2〉, . . . , |en〉} facilitates a particular

view on the state |ψ〉. If one basis element coincides
with the state |ψ〉, then the measurement of Bn is
deterministic: a single proposition associated with the
orthogonal projection operator identical to |ψ〉〈ψ| is
true; and all the other propositions represented by the
remaining basis elements are false. In this case we may
say that this observable reflects a physical property

of that state [14] (thereby affirming the dual use of
orthogonal projections both for pure states as well as for
propositions).
Otherwise, if there is a mismatch between the state

preparation and the query, context translation introduces
stochasticity through the many degrees of freedom of
quasi-classical measurement devices [15]. The epistemic
interpretation of maximal observables as views on the
state |ψ〉 alleviates Schrödinger’s continued concerns re-
garding the ontological existence of coherent superpo-
sitions, so vividly put forward in the cat paradox or
by quantum jellification mentioned in his lesser known
Dublin seminars [2].

C. Probability

Gleason’s theorem [16] states that (for dimensions
larger than two, allowing intertwining orthogonal bases)
the quantum probabilities follow from the requirement
that on all contexts the quantum probabilities should be
identical with their respective classical probabilities (in
particular, σ-additivity of probabilities of mutually ex-
clusive events). That is, within classical mini-universes
of a quantum logic, classical probabilities rule.
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FIG. 1. Different orthonormal bases {|e1〉, |e2〉} and
{|f1〉, |f2〉} offer different “views” on the pure state |ψ〉. As
|ψ〉 is a unit vector it follows from the Pythagorean theorem
that |〈ψ|e1〉|

2 + |〈ψ|e2〉|
2 = |〈ψ|f1〉|

2 + |〈ψ|f2〉|
2 = 1, thereby

motivating the use of the abolute value (modulus) squared of
the amplitude for quantum probabilities on pure states.

Although most of his paper is devoted to proving ne-
cessity of the Born rule (including mixed states) from
this assumption, already in the second paragraph Glea-
son observed that, as long as one is concerned merely
about pure states it is possible to construct a probability

measure on the Hilbert space via an elementary geomet-
ric construction, suggesting the squared norm of the or-
thogonal projections of these pure states onto the vectors
of some orthonormal basis as quantum probability mea-
sure. One could again say that the pure state is “viewed
from” the maximal operator corresponding to the afore-
mentioned basis.

In contrast to the full proof of Gleason’s theorem, the
argument for the sufficiency of the squared norm proba-
bility measures (satisfying classicality within contexts) is
elementary; thereby the absolute squares of the prob-
ability amplitudes 〈ψ|ei〉 result from the Pythagorean
theorem: since |ψ〉 is a unit vector and the |ei〉 repre-
sent vectors of an orthonormal basis, all absolute squares
of 〈ψ|ei〉 sum up to one; that is,

∑n

i=1
|〈ψ|ei〉|2 = 1.

A construction of such a Gleason-type measure in two-
dimensional real vector space is depicted in Figure 1.

By construction, this probability measure satisfies
the requirement of the validity of classical probabilities
within all classical mini-universes. This is remarkable
because of the absence of (sufficiently many) global two-
valued measures [17] whose positive convex combinations
form all classical probability measures [18].
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D. Entanglement

Pointedly stated, quantum entanglement is a conse-
quence of the inseparability of not-so-individual quanta.
In general, quantum states do not allow the decom-
position into product states of constituents. For in-
stance, a general three partite state of three bits |ψ〉 =
∑

1

i,j,k=0
αijk|ijk〉 is entangled if and only if it cannot be

written as a single product state of the three constituents;
a non-entangled product state of three particles re-
quires [19] (p. 18) that all of the following equations
are satisfied: α000α011 = α001α010, α000α101 = α001α100,
α000α110 = α010α100, α000α111 = α011α100, α001α110 =
α011α100, α001α111 = α011α101, α010α101 = α011α100,
α010α111 = α011α110, α100α111 = α101α110.

As a consequence, unlike classical properties, entan-
gled states encode (not purely individual but) relational
properties of multiple quanta [20, 21]. It is thus futile
to request, as Einstein maintained in a letter communi-
cated to Schrödinger [4, 5, 22], that the sub-state of an
entangled state is not affected by any change of another
sub-state if the two involved entangled sub-systems are
spatially separated.

E. Evolution as Permutation

The quantum evolution is postulated to be an
isometry (that is, a distance preserving map);
or, stated differently, a permutation—a one-
to-one mapping—preserving the scalar product.
This can be formalized by unitary transforma-
tions [23]: suppose Bn = {|e1〉, |e2〉, . . . , |en〉} and
B

′
n = {|f1〉, |f2〉, . . . , |fn〉} are orthonormal bases, then

Ufe =
∑n

i=1
|fi〉〈ei| yields a unitary transformation;

conversely, any unitary transformation can be repre-
sented by such a change of orthonormal bases. So,
stated pointedly, the quantum evolution amounts to a
(generalized) rotation either of the state vector (the
active, Schrödinger representation), or of the coordinate
frame (passive, Heisenberg picture) relative to which the
state is viewed.

Much of the conceptual progress in the foundations of
quantum mechanics owes to the exploitation of this one-
to-one permutation scheme in various scenarios: to name
just three examples, take quantum teleportation [24], in-
duced coherence [25], and the quantum erasure [26–28].
Indeed, as has already been pointed out by Everett [29]
(p. 454) (see also Wigner [30]) there is no such thing as
an “irreversible measurement” if quantum theory is as-
sumed universally and uniformly valid: what we fapp [31]
call “measurement” is means relative [32], epistemic, and
could, at least in principle, be undone if our operational
capacities permit.

F. Computational Resources

Quantum theory offers or identifies a single state vec-
tor, or orthonormal systems of vectors, which can be ro-
tated or viewed from various perspectives, and on which
projection measurements can be made, as the quantum
resource for computations. Related alleged capacities,
such as “quantum parallelism” associated with coherent
superposition induced by views on this vector which do
not coincide with it, or ex nihilo randomness induced by
the quasi-stochasticity of the resulting measurement re-
sults through context translations, or entanglement orig-
inating from the pretension that the state of subsystems
which are spatially apart must be separable, are implica-
tions which need to be carefully revised [33, 34] in order
to re-evaluate the quantum capacities for computation.

III. RENDITIONS VIA ORTHOGONAL
SUBSPACES

So far the stage has been set for concrete
proposals to utilize quantized systems for “opti-
mized” computation: in particular, by “looking at
a pure state from a proper perspective;” that is,
from an orthonormal basis of which it is not an element.
In such a basis, the pure state has a composition in terms
of more than one basis vectors—in quantum mechanical
terms, the state is in a coherent superposition of these
basis vectors. If the basis ist associated with classical bit
states, such as B2 = {|0〉, |1〉}, one could claim that a
quantum state such as α0|0〉+ α1|1〉 with non-vanishing
α0, α1 is “in both states |0〉 and |1〉 simultaneously.” This
may nurture hopes that the simultaneous co-processing
of an arbitrary amount of data or clauses might become
quantum feasible by introducing a “sufficient” amount of
bits in superposition.

One fundamental issue which has to be accounted for
is the fact that any recursive function is completely char-
acterized by its input-output behaviour. In order to per-
form an evaluation (of the recursive function), this be-
haviour must be coded into a physical operation simu-

lacron [35].

However, there is a fundamental limit to quantum com-
putation which resides in one of the basic relations be-
tween vectors in Hilbert space: their (non-)orthogonality.
This translates into the criterion that a query is quan-
tum mechanically feasible if and only if it can be en-
coded into orthogonal subspaces. As the unitary evolu-
tion preserves angles, and thus orthogonality, within the
same Hilbert space there is nothing one can do about
“orthogonally separating” two non-orthogonal subspaces,
because a Gram-Schmidt orthogonalisation is quantum
infeasible when it is most needed; that is, if the initial
vectors are not orthogonal (just as the cloning of an ar-
bitrary quantum state is impossible for the same reason—
unitarity of the quantum state evolution).
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A. Example

Recall the supposition (or rather speculation) men-
tioned earlier: that the result of any kind of (binary)
decision problem can be obtained by taking “enough”
qubits to “cover all cases” through the coherent super-
position of all classical cases by a single quantum query.
Indeed, for the sake of temporal speedups, we could be
so bold as to attempt to quantum encode an algorithm
as the “parallel” (weighted by relative phases and am-
plitudes) sum (not the product); that is, the coherent
superposition, of all conceivable classical clauses. (Never
mind computation space; that is, the amount of qubits,
as long as this resource is bounded. Memory space is
also required in order to render the computation one-
one; that is, a permutation, if the evaluated functions
are not invertible.)
For the sake of an example of this strategy, consider

Deutsch’s problem for computing the parity of a binary
function of a single bit. there, two bits—the input bit
and an auxiliary bit (to take care of injectivity in case
the function is constant)—which are initially classical,
are spread out by Hadamard gates into a proper (the
relative phases are relevant) coherent superposition of all
classical states.
At the heart of this algorithm is a way to subdivide

the four-dimensional state space of the two bits into two
orthogonal subspaces associated with parity ±1, respec-
tively, thereby rendering parity in a single query. (See
[36] for a different finding.) The quantum versus classi-
cal trade-off is the ignorance of the precise function (out
of four) after this single quantum query.
How can this exactly be achieved? Suppose we iden-

tify with the classical bit states 0 and 1 the quantum
states, represented by the two vectors of a Cartesian ba-

sis B2, 0 ≡ |0〉 ≡
(

1
0

)

and 1 ≡ |1〉 ≡
(

0
1

)

, respectively.

Suppose further that the four binary functions of a single
classical bit are the two constant functions f0(x) = 0 and
f3(x) = 1, as well as the identity f1(x) = x and the nega-
tion f2(x) = 1 ⊕ x, where x ∈ {0, 1} and ⊕ represents
the addition modulo 2. By forming a unitary quantum
oracle Ufi |xy〉 = |x [y ⊕ fi(x)]〉, i ∈ {0, 1, 2, 3}, and by

taking |x〉 = |y〉 =
(

1/
√
2
)

|0− 1〉 one obtains (by omit-

ting normalization factors; the superscript T indicates
transposition, and “±” stands for “±1,” respectively)

Uf0 |(0−1)(0−1)〉 = |+00−01−10+11〉 ≡
(

+−−+
)T

Uf1 |(0−1)(0−1)〉 = |+00−01+10−11〉 ≡
(

+−+−
)T

Uf2 |(0−1)(0−1)〉 = |−00+01−10+11〉 ≡
(

−+−+
)T

Uf3 |(0−1)(0−1)〉 = |−00+01+10−11〉 ≡
(

−++−
)T

(1)

If one is being presented with an unknown function
fi and is given the task to identify [37, 38] it, the
following two-(binary)-valued query is associated with

❅
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✯
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FIG. 2. Demonstration of the orthogonalisation by dimen-
sional lifting for two planar vectors |e1〉 and |e2〉 which are
“lifted” into two orthogonal vectors |f1〉 and |f2〉 in three di-
mensions which orthogonally project onto |e1〉 and |e2〉.

functional parity: in terms of subspaces in fourdimen-
sional Hilbert space with the basis B2 ≡ {|e1〉, |e2〉} ≡
{

(1/2)
(

1,−1,−1, 1
)T
, (1/2)

(

1,−1, 1,−1
)T

}

, and writ-

ten as spectral sum P = |e1〉〈e1| − |e2〉〈e2| corresponding
to a partitioning [39–41] of functions {{f0, f3}, {f1, f2}}.
It might not be too critical to call the coincidence be-

tween the particular “modulo two” oracle and parity of
a binary function of one bit ad hoc.

B. Generalized Gram-Schmidt Process

In the previous example the input-output behaviour
{{0, 0}, {0, 1}, {1, 0}, {1, 1}} of a functional class has
been translated into the appropriate orthogonal sub-
spaces; the trade-off being the enlargement of Hilbert
space by two extra dimensions. The question arises if it
is always possible to do so.
As an illustration consider two non-orthogonal and

non-collinear planar vectors depicted in Figure 2.
Suppose we “extend” those vectors into the three-
dimensional space such that the direction and length of
the two new non-planar vectors is chosen such that (i)
they are orthogonal, and at the same time (ii) their or-
thogonal projections onto the plain are identical with the
original planar vectors.
In the following we shall prove the formal (but not

quantum physical) possibility of orthogonalisation by di-

mensional lifting: An arbitrary number k of nonzero vec-
tors {|e1〉, . . . , |ek〉} of n-dimensional Hilbert space can
be (non-uniquely) interpreted as the orthogonal projec-
tions (onto the original Hilbert space) of a set of mu-
tually orthogonal (i.e., 〈fi|fj〉 = 0 for i 6= j) vectors
{|f1〉, . . . |fk〉} in an Hilbert space of dimension m ≥ n.
For the sake of an explicit example, suppose that,

for two vectors (i.e., k = 2) and arbitrary finite di-

mension n, we start with |e1〉 ≡
(

x11, . . . , x1n
)T

, and
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|e2〉 ≡
(

x21, . . . , x2n
)T

. It is not too difficult to construct
two vectors

|f1〉 ≡
(

x11, . . . , x1n, 1
)T

|f2〉 ≡
(

x21, . . . , x2n,− [x11x21 + · · ·+ x1nx2n]
)T

(2)

which are orthogonal vectors in n+1 dimensions and
project onto |e1〉 and |e2〉, respectively. The configu-
ration for n = 2 is depicted in Figure 2.
The general proof by construction is itera-

tive and follows an “inverse” (in the sense of
“adding” some dimension rather than “subtract-
ing” existing vector projections) generalized Gram-
Schmidt process: suppose all the k vectors of n-
dimensional space are non-collinear and non-orthogonal.
Then, by a series of combinations, whose num-

ber is determined by the binomial coefficient

(

k
2

)

,

of two vector orthogonalisations as above, while at the
same time, by taking the new vector component of all
the other k− 2 vectors zero, one can construct a set of k

mutually orthogonal vectors in

[

k+

(

k
2

)]

-dimensional

vector space whose orthogonal projections on the original
space are the original vectors. Another orthogonalisation
by dimensional lifting requiring merely n+ k dimensions
due to Havlicek [42] will be discussed in a forthcoming
paper.
A necessary and sufficient condition for a gen-

eralized Gram-Schmidt process to be representable
by a quantum evolution is its correspondence
to some unitary operation from the initial into
the final state. Unfortunately, by design this
generalized Gram-Schmidt process is not unitary
per se. (However, this also is true for the func-
tional encoding of bits before the introduction of
a quantum oracle: a priori the introduction of auxiliary
bits is not guaranteed to be representable by a unitary
transformation.) Recall that, as has been mentioned
earlier, a necessary and sufficient condition for a unitary
transformation is that, by Ufe =

∑n

i=1
|fi〉〈ei| any

orthonormal basis Bn ≡ {|e1〉, |e2〉, . . . , |en〉} is trans-
formed into another one B

′
n ≡ {|f1〉, |f2〉, . . . , |fn〉} [23].

However, in our case, neither are the original vectors
orthogonal, nor needs the target system to be a basis.
(This latter deficiency could, in principle, be remedied
by adding basis vectors, thereby creating an eutactic
star [43, 44].) So, unless the vectors resulting from (i)
are not already properly orthogonal (for the particular
quantum query), the generalized Gram-Schmidt process
(ii) has no quantum mechanical realization.
Moreover, unitary transformations preserve the angles

among vectors. Therefore, if the functional behaviour,
subjected to a quantum oracle, cannot separate different
functional properties by orthogonal subspaces, not much
can be gained by a straightforward generalized Gram-
Schmidt processes.
Nevertheless, let us, for the sake of another

example of dimensional lifting, come back to
Deutsch’s problem, and consider another ad hoc quan-
tum oracle, namely Vfi |xy〉 = |xfi(y)〉, i ∈ {0, 1, 2, 3},
resulting in

Vf0 |(0+1)(0+1)〉 = |+00+10〉 ≡
(

+0+0
)T

Vf1 |(0+1)(0+1)〉 = |+00+11〉 ≡
(

+00+
)T

Vf2 |(0+1)(0+1)〉 = |+01+10〉 ≡
(

0++0
)T

Vf3 |(0+1)(0+1)〉 = |+01+11〉 ≡
(

0+0+
)T

(3)

By appending four extra dimensions it is not difficult
to ad hoc orthogonalise this set of vectors (two pairs are
already orthogonal); namely

(

+0+0+000
)T

(

+00+−+00
)T

(

0++0−−++
)T

(

0+ 0+0−−−
)T

(4)

so that, provided a suitable quantum oracle could be
found which maps the functional behaviour into the or-
thogonal subspaces spanned by the vectors in Equation
(4), an unknown function fi could be identified uniquely
by a single query (encoding the orthogonal projections
corresponding to this latter set of orthogonal vectors).

C. Counterexample and (In-)Sufficiency

Our hypothesis has been that it is not totally unrea-
sonable to speculate that any functional behaviour can
somehow be mapped into orthogonal subspaces through
the application of a single functional call whose argu-
ment is the (equal-weighted) superposition of all possible
classical variations of arguments. More specifically, if
reversibility is guaranteed by the introduction of auxil-
iary bits, different functional behaviours on such argu-
ments result in mutually different (non-orthogonal) vec-
tors; which then might be “lifted” into mutually orthog-
onal subspaces in Hilbert spaces of greater dimensions
than the original Hilbert space. Any query, performed
on this higher-dimensional Hilbert space, could be real-
ized by “bundling” (formally by adding) the associated
projections appropriately.
Indeed, it might be possible (in contrast to findings

using different assumptions and oracles [36]) with this
method to solve the parity problem by a single quantum
query, through separating the parity even and odd func-
tions into two orthogonal subspaces, whose direct sum is
the entire Hilbert space.
However, the unitary quantum state evolution imposes

strong restrictions on such queries, because it essentially
amounts to isometries; that is, to rotations of state vec-
tors: the functional properties must be encoded into
these rotations; and the subspaces associated with the
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particular functional classes which need to be distin-
guished from one another must be rotated in such ways
that their relative separation amounts to orthogonality.

Therefore there exist collections of functions which, rel-
ative to some particular quantum oracles, in particular,
Ui(|x1, . . . ,xn,y〉) = |x1, . . . ,xn,y⊕ fi(x1, . . . ,xn)〉,
cannot be orthogonally separated.

For an indication consider [45], as a generalization of
Deutsch’s problem discussed earlier, two particular bi-
nary functions of two bits with different parity, namely
f0(xy) = 0 for all x, y ∈ {0, 1}, and f8(00) = f8(01) =
f8(10) = 0, as well as f8(11) = 1. A similar calculation

as in Equation (1) yields

Uf0 |(0− 1)(0− 1)(0− 1)〉
= |+000− 001− 010+ 011− 100+101+110− 111〉

≡
(

+−−+−++−
)T

Uf8 |(0− 1)(0− 1)(0− 1)〉
= |+000− 001− 010+ 011− 100+101− 110+ 111〉

≡
(

+−−+−+−+
)T

(5)

f0 and f8 represent functional parity +1 and −1; and
yet their respective quantum oracles Uf0 and Uf8 do
not map the state |(0− 1)(0− 1)(0− 1)〉 into orthogonal
states (indeed, non-orthogonality may come as no sur-
prise).
Note that, although the relative phases of the coherent

superposition of the three input bits have been chosen
to be π, other phases could result in orthogonal vectors
as desired. For the sake of demonstration, consider the
general case (with |ai|2 + |bi|2 = 1)

Uf0 (a1|0〉+ b1|1〉) (a2|0〉+ b2|1〉) (a3|0〉+ b3|1〉)
= a1a2a3|000〉+ a1a2b3|001〉+ a1b2a3|010〉+ a1b2b3|011〉+

b1a2a3|100〉+ b1a2b3|101〉+ b1b2a3|110〉+ b1b2b3|111〉
≡

(

a1a2a3, a1a2b3, a1b2a3, a1b2b3, b1a2a3, b1a2b3, b1b2a3, b1b2b3
)T

Uf8 (a1|0〉+ b1|1〉) (a2|0〉+ b2|1〉) (a3|0〉+ b3|1〉)
= a1a2a3|000〉+ a1a2b3|001〉+ a1b2a3|010〉+ a1b2b3|011〉+

b1a2a3|100〉+ b1a2b3|101〉+ b1b2b3|110〉+ b1b2a3|111〉
≡

(

a1a2a3, a1a2b3, a1b2a3, a1b2b3, b1a2a3, b1a2b3, b1b2b3, b1b2a3
)T

(6)

The scalar product of these vector vanishes for the par-
ticular value assignments a1 = a2 = a3 = 0 and thus
b1 = b2 = b3 = 1. Alas, this particular value assignment
is improper to separate other cases such as, for instance,
f8 and f15 = 1 orthogonally.

IV. SUMMARY

The main goal of this paper has been a discussion of,
and the enumeration of criteria for encoding some algo-
rithmic task into quantum mechanically feasible orthog-
onal subspaces. This is by no means a trivial task.
With regards to somehow “mapping” a functional be-

haviour into Hilbert space, such that certain relational
or holistic functional properties—manifesting themselves
in the relational values for different elements of their do-
main, and only after the evaluation of more than one clas-
sical input—reveal themselves through efficient quantum
queries, the situation is what may be called “ambivalent.”

On the one hand, relative to some quantum oracle,
it is sometimes impossible to decide certain relational
or functional properties, simply because this particular
quantum oracle is unsuitable to render the appropriate
orthogonal subspaces.

On the other, more promising, hand, by the orthogo-
nalisation via dimensional lifting of non-orthogonal vec-
tors, it cannot be excluded that any functional property
can be mapped into orthogonal subspaces of some Hilbert
space of higher dimension than the space spanned by the
original non-orthogonal vectors. In this sense, any func-
tional property, including parity, might be decidable by
a single quantum query.

The situation is not dissimilar to the purification of
a mixed state, where the “missing information” is (non-
uniquely) supplemented by fitting hypotheses or conjec-
tures (about the original pure state). However, this gen-
eralized Gram-Schmidt process is not unitary in general,
and thus does not correspond to any quantum capacity.

So far, all quantum speedups based on orthogonalisa-
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tion have been ad hoc; no method to convert or translate
a general functional behavior encoded by a coherent su-
perposition of functional clauses (and made injective by
adding bits) into orthogonal subspaces of a Hilbert space
has been found. Also the method of dimensional lifting
introduced here is quantum infeasible because it is non-
unitary (translating non-orthogonal vector into orthog-
onal ones). Therefore, the question remains of whether
a general unitary method of dimensional lifting, possibly
utilizing auxiliary bits, can be found.
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