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Abstract We consider ways of conceptualizing, rendering
and perceiving quantum music and quantum art in general.
Thereby, we give particular emphasis to its non-classical
aspects, such as coherent superposition and entanglement.
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1 Introduction

As a caveat we would like to state upfront that we shall
primarily deal with artistic expressibility rather than with
aesthetics—we take it for granted that the human percep-
tion of art is invariably bound by the human neurophysiology
and hence is subject to a rather narrow bracket or “aesthetic
bandwidth” in between monotony and chaos (Svozil 2008).
One may speculate that art in the past centuries until today,
from the Belle Epoque onward, is increasingly dominated
by scarcity and the cost of creation and rendition. Those
forms of artistic expressions, such as architecture, for which
an increase of complexity, in particular ornamentation, are
costly, tend to become more monotonous, whereas in other
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artistic domains such as music the tendency to increase com-
plexity by sacrificing harmony has encouraged compositions
which are notoriously difficult to perceive.

Moreover, human neurophysiology suggests that artistic
beauty cannot easily be disentangled from sexual attraction.
It is, for instance, very difficult to appreciate Sandro Botti-
celli’s Primavera, the arguably “most beautiful painting ever
painted,” when a beautiful woman or man is standing in front
of that picture. Indeed so strong may be the distraction, and
so deep the emotional impact, that it might not be unreason-
able to speculate whether aesthetics, in particular beauty and
harmony in art, could be best understood in terms of surro-
gates for natural beauty. This might be achieved through the
process of artistic creation, idealization and “condensation.”
In this line of thought, in Hegelian terms, artistic beauty is
the sublimation, idealization, completion, condensation and
augmentation of natural beauty.

Very different from Hegel who asserts that artistic beauty
is “born of the spirit and born again, and the higher the
spirit and its productions are above nature and its phenom-
ena, the higher, too, is artistic beauty above the beauty of
nature (Hegel 1835-1838, Part 1, Introduction)” we believe
that human neurophysiology can hardly be disregarded in
the human creation and perception of art, and, in particular,
of beauty in art. Stated differently, we are inclined to believe
that humans are so invariably determined by (or at least inter-
twined with) their natural basis that any neglect of it results
in a humbling experience of irritation or even outright ugli-
ness, no matter what social pressure groups or secret services
(Wilford 2008) may want to promote.

Thus, when it comes to the intensity of the experience, the
human perception of artistic beauty, as sublime and refined as
it may be, can hardly transcend natural beauty in its full expo-
sure. For example, it is not unreasonable to suspect that the
Taj Mahal could never compensate its commissioner Mughal
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emperor Shah Jahan for the loss of his beloved third wife
Mumtaz Mahal. In that way, art represents both the capacity
as well as the humbling ineptitude of its creators and audi-
ences.

Let us leave these idealistic realms and come back to the
quantization of musical systems. The universe of music con-
sists of an infinity—indeed a continuum—of tones and ways
to compose, correlate and arrange them. It is not evident how
to quantize sounds, and in particular music, in general. One
way to proceed would be a microphysical one: to start with
frequencies of sound waves in air and quantize the spec-
tral modes of these (longitudinal) vibrations very similar to
phonons in solid state physics (Fetter and Walecka 1971).

For the sake of relating to music, however, we shall
pursue a different approach that is not dissimilar to the
Deutsch-Turing approach to universal (quantum) com-
putability (Mermin 2007), or Moore’s automata analogues to
complementarity (Moore 1956): we shall quantize a musical
instrument, in particular, a piano. To restrict our considera-
tions even further, we shall only be concerned with an octave,
realized by the eight white keyboard keys typically written
c,d,e, f,g,a,b,c (in the C major scale), respectively. Of
course, from a musical point of view, it would be preferable
to use the entire chromatic scale; unfortunately, this could
increase the complexity of the argument without gaining con-
ceptual advantages.

In analogy to quantum information, we shall first consider
the quantization of tones. We shall introduce a nomenclature
in analogy to classical musical representation. Then we will
introduce typical quantum mechanical features such as the
coherent superposition of classically distinct tones, as well
as entanglement and complementarity in music.

2 Quantum musical tones

In what follows, we shall quantize musical instruments, in
particular, a piano. Thereby we have to make formal choices
which are not unique. We shall mention alternatives as we
develop the theory.

We consider a quantum octave in the C major scale, which
classically consists of the tones ¢, d, e, f, g, a, b, and ¢/, rep-
resented by eight consecutive white keys on the piano. (Other
scales are straightforward.) At least three ways to quantize
this situation can be given: (i) bundling octaves, as well as
considering pseudo-field theoretic models treating notes as
(ii) bosonic or (iii) fermionic field modes.

2.1 Bundling octaves into single observables
We could treat the seven tones c,d,e, f, g,a, and b as

belonging to disjoint events (maybe together with the null
event 0) whose probabilities should add up to unity. This
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Fig. 1 (Color online) Temporal succession of quantum tones |¥.),
[¥4), ..., |W) in the C major scale forming the octave basis 5

would essentially suggest a formalization by a seven (or
eight)-dimensional Hilbert space C” or C?®) with the stan-
dard Euclidean scalar product. This Hilbert space represents
afull octave. In the quantum piano case, different observables
correspond to different octave blocks (realized by different
equal-dimensional Hilbert spaces) on the keyboard.

From now on, we shall only consider the
seven-dimensional case C’. The seven tones forming one
octave can then be represented as a basis 9B of C” by forming
the set theoretical union of the orthogonal unit basis vectors;
thatis, B = {|¥.), |¥,), ... |¥)}, where the basis elements
are the Cartesian basis tuples |¥.) = (0,0,0,0,0,0, 1),
Y;) = (0,0,0,0,0,1,0), ..., |¥) = (1,0,0,0,0,0,0)
of C”. Figure 1 depicts the basis B by its elements, drawn in
different colors.

Then, pure quantum musical states could be represented
as unit vectors ) € C’ which are linear combinations of
the basis B; that is,

V) = ac|¥e) +ag|Wa) + - - + ap|¥h), (1

with coefficients o; satisfying | |> + |org |>+- - -+ ap|> = 1.
Equivalent representations of |i) are in terms of the one-
dimensional subspace {|¢) | |¢) = «|¢), @ € C} spanned
by ), or by the projector Ey = [y) (y/].

In most general terms (at least for this octave), a musi-
cal composition—the succession of quantized tones as time
goes by and the system evolves—such as a melody, would
be obtained by the unitary permutation of the state |v). The
realm of such compositions would be spanned by the suc-
cession of all unitary transformations U : B > 9B’ mapping
some orthonormal basis B into another orthonormal basis
B’; that is, (Schwinger 1960), U = > |¥/;)(¥;].

4

2.2 Quantum musical parallelism

If a classical auditorium listens to the quantum musical state
|Yr) in Eq. 1, then the individual listeners may perceive |y)
very differently; that is, they will hear only a single one of the
different tones with probabilities |c, 12, |agl?, ..., and |ap|?,
respectively.

Pointedly stated, a truly quantum music never renders a
unique listening experience—it might not be uncommon for
part of the audience to hear different manifestations of the
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quantum musical composition made up of all varieties of
successions of tones. For instance, one listener may hear
Mozart’s A Little Night Music, K 525, whereas another lis-
tener Prokoviev’s Le pas d’acier, Op 41, and a third one would
enjoy a theme from Marx’s Autumn Symphony (1921). We
could perceive this as quantum parallel musical rendition—a
classical audience may perceive one and the same quantum
musical composition very differently.

For the sake of a demonstration, let us try a two-note quan-
tum composition. We start with a pure quantum mechanical
state in the two-dimensional subspace spanned by |¥,) and
|W,), specified by

W) = 2190 + 21 = = (4 @
1#1 = 5 c 5 gl = 5\3)°
[¥r1) would be detected by the listener as ¢ in 64 % of all
measurements (listenings), and as g in 36 % of all listenings.

), the next quan-

. . . 1
Using the unitary transformation X = ((1) 0

tum tone would be

X 3 4 1 /3
[V2) = |¢1)=§|Wc>+§lwg>=§(4)- 3)
This means for the quantum melody of both quantum tones
[¥r1) and |¥2) in succession—for score, see Fig. 2—that in
repeated measurements, in 0.642 = 40.96 % of all cases
¢ — g is heard, in 0.362 = 12.96 % of all cases g —oc,in
0.64-0.36 = 23.04 % of all cases ¢ — c or g — g, respectively.
Thereby, one single quantum composition can manifest itself
during listening in very different ways.

This offers possibilities of aleatorics in music far beyond
the classical aleatoric methods of John Cage and his allies.

2.3 Bose and Fermi model of tones

An alternative quantization of music to the one discussed
above is in analogy to some fermionic or bosonic—such as
the electromagnetic—field. Just as the latter one in quan-
tum optics (Glauber 1970, 2007) and quantum field theory
(Weinberg 1977) is quantized by interpreting every single
mode (determined, for the electromagnetic field for instance
by a particular frequency and polarization) as a sort of
“container”—that is, by allowing the occupancy of that mode
to be either empty or any positive integer (and a coher-
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Fig. 2 (Color online) A two-note quantum musical composition—a
natural fifth

ent superposition thereof)—we obtain a vast realm of new
musical expressions which cannot be understood in classical
terms.

In what follows we shall restrict ourselves to a sort of
“fermionic field model” of music which is characterized
by a binary, dichotomic situation, in which every tone has
either null or one occupancy, represented by [0) = (0, 1)
or [1) = (1,0), respectively. Thus, every state of such
a tone can be formally represented by entities of a two-
dimensional Hilbert space C2, with the Cartesian standard
basis B = {|0), |1)}.

Any note |¥;) of the octave consisting of |¥,), |¥), .. .,
W), |¥x) in the C major scale can be represented by the
coherent superposition of its null and one occupancies; that
is,

|¥i) = o;10;) + Bill;), 4)

with Jo;|? + |Bi|* = 1, ;.8 € C.

At this stage, the most important feature to notice is that
every tone is characterized by the two coefficients ¢ and 8,
which in turn can be represented (like all quantized two-
dimensional systems) by a Bloch sphere, with two angular
parameters. If we restrict our attention (somewhat superfi-
cially) to real Hilbert space R2, then the unit circle, and thus
a single angle ¢, suffices for a characterization of the coeffi-
cients o and S. Furthermore, we may very compactly notate
the mean occupancy of the notes by gray levels. Figure 3
depicts a sequence of tones in an octave in the C major scale
with decreasing occupancy, indicated as gray levels.

In this case, any non-monotonous unitary quantum musi-
cal evolution would have to involve the interaction of
different tones, that is, in the piano setting, across sev-
eral keys of the keyboard. We shall come back to this
later.

3 Quantum musical coherent superposition

One of the mind-boggling quantum features is the possi-
bility of the simultaneous formal “existence” of classically
excluding musical states, such as a 50:50 quantum g in the C
major scale obtained by sending |0 ) through the Hadamard
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U
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Fig. 3 Temporal succession of tones |¥,), |¥y;), ..., |¥) in an octave

in the C major scale with decreasing mean occupancy
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Fig. 4 Representation of a h
50:50 quantum tone
@) = 75 (10g) = [1)) in Y
gray (without indicating phase
factors)

2\1 -1
depicted in Fig. 4 by a 50 white 50 black, that is, gray, tone
(though without the relative “—" phase).

In music, such experience of “floating in as well as out
of” a tone—faintly resembling the memory of having heard
or not heard a particular tone or melody—may not be totally
foreign to audiences. This new form of musical expression
might contribute to novel musical experiences; in particu-
lar, if any such coherent superposition can be perceived by
the audience. Note, however, that any attempt to “amplify”
a coherent signal may be in vain due to the inevitable intro-
duction of noise (Glauber 1986, 2007).

Schrodinger, in particular, was concerned about any such
quantum coherence. When it is extended into macroscopic
situations, it yields his cat paradox (Schrodinger 1935); or his
polemic regarding the “jellification” of the universe without
measurement (Schrodinger 1995). The puzzling basis of such
alleged paradoxes is the seemingly impossibility of any con-
scious macroscopic individual entity to simultaneously pass
through the two slits of a double slit experiment, a property
well verified for individual quanta (Zeilinger et al. 1988).
From a purely formal point of view, any mixture of the two
musical states amounts merely to a basis transformation in
two-dimensional musical Hilbert space—in this sense, the
piano “tuned to” produce |0, ) and |1,) needs to be “retuned”
0 10) = -5 (10g) +[1g)) and |1') = 5 (10g) — [1,)).
respectively.

gate H = % bl ), resulting in % (10g) — I1,)), and

4 Quantum musical entanglement

Quantum entanglement (Schrodinger 1935) is the property
of multipartite quantum systems to code information “across
quanta” in such a way that the state of any individual quan-
tum is irreducibly indeterminate; that is, not determined by
the entangled multipartite state (Zeilinger 1999; Brukner
et al. 2002). In other words, the entangled whole cannot be
composed of its parts; more formally, the composite state
cannot be expressed as a product of states of the individual
quanta.

A typical example of an entangled state is the Bell state,
|@ ™) or, more generally, states in the Bell basis spanned by
the quantized notes e and a; that is

@ Springer

>
e

&
—eo-

Piano

wrm

Fig. 5 Quantum musical entangled states |¥,,) and |¥,}) in the first
bar, and |®,,) and \d);) in the second bar (without relative phases)
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Fig. 6 (Color online) Quantum musical entangled states for bundled
octaves [¥_,) and [¥ ) in the first bar, and @) and @) in the
second bar (without relative phases)
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Indeed, a short calculation (Mermin 2007, Sec. 1.5)
demonstrates that a necessary and sufficient condition for
entanglement among the quantized notes e and « is that the
coefficients o, o2, o3, 4 of their general composite state
[Wea) = 1]0:)104) + @2|00)[14) + a3]1.)[04) + aalle)[14)
obey ajos # apa3. This is clearly satisfied by Eq. (5).
Figure 5 depicts the entangled music bell states.

We only remark that a very similar argument yields entan-
glement between different octaves. Figure 6 depicts this
configuration for an entanglement between e and a’.

W) =

5 Quantum musical complementarity

Although complementarity (Pauli 1933) is mainly discussed
in the context of observables, we can present it in the state
formalism by observing that, as mentioned earlier, any pure
state |y) corresponds—that is, is in one-to-one correspon-
dence (up to phase a factor)—to the projector Ey, = [v)(y/].
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Fig. 7 Temporal succession of complementary tones a for binary occu-
pancy |¢a) = q|04) + Balla), and |ag|? + |Ba|> = 1 with increasing
|y | (decreasing occupancy), b in the bundled octave model, separated
by bars

In this way, any two non-vanishing non-orthogonal and non-
collinear states [ir) and |¢) with 0 < (¢|Y) < 1 are
complementary. For the dichotomic field approach, Fig. 7
represents a configuration of mutually complementary quan-
tum tones for the note a in the C major scale.

6 Summary

We have proposed the basic ideas for a new kind of (quantum)
music by presenting a straightforward quantization of music,
obtained by quantizing the “white” notes of a piano octave.
In this approach, generalizations to more than one octave, to
the chromatic scale, as well as to other musical instruments,
appears to be straightforward.

We have also studied some non-classical features avail-
able to quantum music, such as coherent superposition of
classically distinct tones, tonal entanglement and comple-
mentarity.

We have pursued a strictly non-artistic, non-aesthetic
approach. In doing so, we have merely attempted to extend
music to the quantum realm. No claims have been made that
this realm is useful or necessary for aesthetics, or for musical
expression.

One way to make use of this formalism is to get inspired
by its freedom and new capacities, even for quasi-classical
analogues.
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