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Abstract In the first part of this paper we analyze possible quantum computational

capacities due to quantum queries associated with equi-partitions of pure orthogonal

states. Special emphasis is given to the parity of product states and to functional

parity. The second part is dedicated to a critical review of the relational encoding of

multipartite states across (space-like separated) space-time regions; a property often

referred to as “quantum nonlocality.”

1 Unconventional properties for unconventional computing

At the heart of any unconventional form of computation (information processing)

appears to be some (subjectively and “means relative” to the current canon of knowl-

edge) strange, mind boggling, unexpected, stunning, surprising, hard to believe, fea-

ture or capacity of Nature. That is, in order to search for potentially unconventional

information processing, we have to parse for empirical patterns and behaviour as

well as for theoretical predictions which, relative to our expectations, go beyond our

everyday “classical” experience of the world. “Unconventional” always is “means

relative” and has to be seen in a historic context; that is, relative to our present means

and capacities which we consider consolidated and conventional.

For the sake of some example, take the transmission of data from one point to an-

other via satellite links or cables; or take (gps) navigation by time synchronization;

or take the prediction of all sorts of phenomena, including weather or astronomical

events. All these capacities appear conventional today, but would have been uncon-

ventional, or even magical, only 200 years ago.
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So what are the new frontiers? In what follows I shall mainly concentrate on some

quantum physical capacities which are widely considered as potential resources for

presently “unconventional” computation.

Before we begin the discussion, a caveat is in order. First, we should not get

trapped by inappropriate yet convenient formal assumptions which have no opera-

tional consequences. For instance, all kinds of “infinity processes” have no direct

empirical correspondence. In particular, classical continua abound in physics, but

they need to be perceived rather as convenient though metaphysical “completion”

of processes and entities which are limited by finite physical means.

We should also not get trapped by what Jaynes called Mind Projection Fallacy

[1, 2], pointing out that “we are all under an ego-driven temptation to project our

private thoughts out onto the real world, by supposing that the creations of one’s

own imagination are real properties of Nature, or that one’s own ignorance signi-

fies some kind of indecision on the part of Nature.” Instead we should attempt to

maintain a curiosity with evenly-suspended attention outlined by Freud [3] against

“temptations to project, what [the analyst] in dull self-perception recognizes as the

peculiarities of his own personality, as generally valid theory into science.”

The postulate of “true,” that is, ontological, randomness in Nature is such a fal-

lacy, in both ways mentioned in the caveat: it assumes infinite physical resources

(or maybe rather ex nihilo creation), as well as our capacity to somehow being able

to “prove” this – a route blocked by recursion theory; in particular, by reduction to

the Halting problem.

2 Quantum speedups by equi-decomposition of sets of

orthogonal states

One of the mind boggling features of quantum information is that, unlike classical

information, it can “reside,” or be encoded into, the relational properties of multiple

quanta [4, 5]. For instance, the singlet Bell state of, say, two electrons is defined by

the following property (actually, two orthogonal spatial directions would suffice):

if one measures the spin properties of these particles along some arbitrary spatial

direction, then the spin value observed on one particle turns out to be always the

negative spin value observed on the other particle – their relative spin value is nega-

tive – that is, either of “+” sign for the first particle and of “−” sign for the second

one; or vice versa. The “rub,” or rather compensation, for this fascinating encoding

of information “across” particles appears to be that none of these individual particles

has a definite individual spin value before the (joint) measurement. That is, all in-

formation encodable into them is exhausted by these relational specifications. This

well recognized capacity of quantum mechanics could be conceived as the “essence

of entanglement” [6].

Besides entanglement there is another capacity which is not directly related to

relational properties of multipartite systems; yet it shares some similarities with the

latter: the possibility to organize elementary, that is, binary (or, in general, d-ary)
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quantum queries resolving properties which can be encoded into (equi-)partitions

of some set of pure states. If such partitions are feasible, then it is possible to obtain

one bit (or, in general, dit) of information by staging such a single query without

knowledge in what particular state the quantized system is.

From a different perspective any such (binary or d-ary) observable is related to

a partial (i.e. incomplete) state identification [7, 8, 9]. Many of the fast quantum

algorithms discussed in the literature depend on incomplete state identification.

Note that, in the binary case, any complete state identification – that is, setting up

a complete set of quantum observables or queries capable to discriminate between

and “locating” all single states – could be seen as the dual (observable) side of

what can be considered an arbitrary state preparation for multipartite systems. This

latter state preparation also features entanglement by allowing appropriate relational

properties among the constituent quanta.

2.1 Parity of two-partite binary states

For the sake of a demonstration of the “unconventional” quantum speedup achiev-

able through partial (incomplete) state identification, consider the four two-partite

binary basis states |00〉, |01〉, |10〉, and |11〉. Suppose we are interested in the even

parity of these states. Then we could construct a even parity operator P via a spec-

tral decomposition; that is,

P = 1 ·P−+ 0 ·P+, with

P− = |01〉〈01|+ |10〉〈10|,
P+ = |00〉〈00|+ |11〉〈11|,

(1)

which yields even parity “0” on |00〉 as well as |11〉, and even parity “1” on |01〉 as

well as |10〉, respectively. Note that P− as well as P+ are projection operators, since

they are idempotent; that is, P
2
− = P− and P

2
+ = P+.

Thereby, the basis of the two-partite binary states has been effectively equi-

partitioned into two groups of even parity “0” and “1;” that is,

{

{|00〉, |11〉},{|01〉, |10〉}
}

. (2)

The states associated with the propositions corresponding to the projection opera-

tors P− for even parity one and P+ for even parity zero of the two bits are entangled;

that is, this information is only expressed in terms of a relational property – in this

case parity – of the two quanta between each other [4, 5].
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2.2 Parity of multi-partite binary states

This equi-partinioning strategy [7, 10] to determine parity with a single query can be

generalized to determine the parity of multi-partite binary states. Take, for example,

the even parity of three-partite binary states definable by

P = 1 ·P−+ 0 ·P+, with

P− = |001〉〈001|+ |010〉〈010|+ |100〉〈100|+ |111〉〈111|,
P+ = |000〉〈000|+ |011〉〈011|+ |101〉〈101|+ |110〉〈110|.

(3)

Again, the states associated with the propositions corresponding to the projection

operators P− for even parity one and P+ for even parity zero of the three bits are

entangled. The basis of the three-partite binary states has been equi-partitioned into

two groups of even parity “0” and “1;” that is,

{

{|000〉, |011〉, |101〉, |110〉},
{|001〉, |010〉, |100〉, |111〉}

}

.
(4)

3 Parity of Boolean functions

It is well known that Deutsch’s problem – to find out whether the output of a binary

function of one bit is constant or not; that is, whether the two outputs have even

parity zero or one – can be solved with one quantum query [11, 12]. Therefore it

might not appear totally unreasonable to speculate that the parity of some Boolean

function – a binary function of an arbitrary number of bits – can be determined

by a single quantum query. Even though we know that the answer is negative [13]

it is interesting to analyze the reason why this parity problem is “difficult” even

for quantum resources, in particular, quantum parallelism. Because an answer to

this question might provide us with insights about the (in)capacities of quantum

computations in general.

Suppose we define the functional parity P( fi) of an n-ary function fi = (gi+1)/2

via a function gi(x1, . . . ,xn) ∈ {−1,+1} and

P(gi) = ∏
x1,...,xn∈{0,1}

gi(x1, . . . ,xn). (5)

Let us, for the sake of a direct approach of functional parity, consider all the 22n

Boolean functions fi(x1, . . . ,xn), 0 ≤ i ≤ 22n − 1 of n bits, and suppose that we can

represent them by the standard quantum oracle

Ui(|x1, . . . ,xn〉|y〉) =
|x1, . . . ,xn〉|y⊕ fi(x1, . . . ,xn)〉 (6)
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as a means to cope with possible irreversibilities of the functions fi. Because fi ⊕
fi = 0, we obtain U2

i = I and thus reversibility of the quantum oracle. Note that all

the resulting n+ 1-dimensional vectors are not necessarily mutually orthogonal.

For each particular 0 ≤ i ≤ 22n − 1, we can consider the set

Fi = { fi(0, . . . ,0), . . . , fi(1, . . . ,1)} (7)

of all the values of fi as a function of all the 2n arguments. The set

V = {Fi | 0 ≤ i ≤ 22n − 1}
=
{

{ fi(0, . . . ,0), . . . , fi(1, . . . ,1)} | 0 ≤ i ≤ 22n − 1
} (8)

is formed by all the 22n+n Boolean functional values fi(x1, . . . ,xn). Moreover, for

every one of the 22n
different Boolean functions of n bits the 2n functional output

values characterize the behavior of this function completely.

In the next step, suppose we equi-partition the set of all these functions into two

groups: those with even parity “0” and “1,” respectively. The question now is this:

can we somehow construct or find two mutually orthogonal subspaces (orthogonal

projection operators) such that all the parity “0” functions are represented in one

subspace, and all the parity “1” are in the other, orthogonal one? Because if this

would be the case, then the corresponding (equi-)partition of basis vectors spanning

those two subspaces could be coded into a quantum query [7] yielding the parity of

fi in a single step.

We conjecture that involvement of one or more additional auxiliary bits (e.g.,

to restore reversibility for nonreversible fi’s) cannot improve the situation, as any

uniform (over all the functions fi) and non-adaptive procedure will not be able to

generate proper orthogonality relations.

We know that for n = 1 this task is feasible, since (we re-coded the functional

value “0” to “−1”)
fi P( fi) fi(0) fi(1)

f0 0 −1 −1

f1 0 +1 +1

f2 1 −1 +1

f3 1 +1 −1

(9)

and the two parity cases “0” and “1,” are coded into orthogonal subspaces spanned

by (1,1) and (−1,1), respectively.

This is no longer true for n= 2; due to an overabundance of functions, the vectors

corresponding to both parity cases “0” and “1” span the entire Hilbert space:
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fi P( fi) fi(00) fi(01) fi(10) fi(11)

f0 0 −1 −1 −1 −1

f1 0 −1 −1 +1 +1

f2 0 −1 +1 −1 +1

f3 0 −1 +1 +1 −1

f4 0 +1 −1 −1 +1

f5 0 +1 −1 +1 −1

f6 0 +1 +1 −1 −1

f7 0 +1 +1 +1 +1

f8 1 −1 −1 −1 +1

f9 1 −1 −1 +1 −1

f10 1 −1 +1 −1 −1

f11 1 −1 +1 +1 +1

f12 1 +1 −1 −1 −1

f13 1 +1 −1 +1 +1

f14 1 +1 +1 −1 +1

f15 1 +1 +1 +1 −1

(10)

3.1 Proper specification of state discrimination

The results of this section are also relevant for making precise Zeilinger’s founda-

tional principle [4, 5] claiming that an n-partite system can be specified by exactly

n bits (dits in general). The issue is what exactly is a “specification?”

We propose to consider a specification appropriate if it can yield to an equi-

partitioning of all pure states of the respective quantized system. That is, to give an

example, the parity of states could serve as a proper specification, but functional

parity in general (for more that two quanta) cannot.

4 Relativity theory versus quantum inseparability

Let us turn our attention to another “unconventional” quantum resource, which is

mostly encountered at (but not restricted to) spatially separated entangled states:

the so-called “quantum nonlocality;” and, in particular, on the paradigm shift of our

perception of physical space and time.

First, let us keep in mind that, in the historic perspective it is quite evident why

our current theory of space-time, relativity theory [14, 15], does not directly re-

fer to quanta: it was created when quantum mechanics was “unborn,” or at least

in its early infancy. Indeed, in 1905 it was hardly foreseeable that Planck’s self-

denominated [16, p. 31] “Akt der Verzweiflung” (“act of despair”) – committed five

years ago in 1900 for the sake of theoretically accommodating precision measure-

ments of the blackbody radiation – would be extended into one of the most powerful
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physical theories imagined so far. Therefore it should come as no surprise that all

operationalizations and conventions implemented by relativity theory, in particular,

simultaneity, refer to classical, pre-quantum, physics.

Besides its applicability and stunning predictions and consequences (such as, for

instance “E = mc2,” as well as the unification of classical electric and magnetic phe-

nomena) the triumph of special relativity resides in its structural as well as formal

clarity: by adopting certain conventions (which were essentially adopted from rail-

road traffic [17, 18] and are also used by Cristian’s Algorithm for data network syn-

chronization), and by fixing the speed of electromagnetic radiation for all reference

frames (together with the requirement of bijectivity), the Lorentz transformations

result from theorems of incidence geometry [19, 20]. Beyond formal conventions,

the physical content resides in the form invariance of the equations of motion under

such transformations.

In view of these sweeping successes of classical relativity theory it might not be

surprising that Einstein, one of the creators of quantum mechanics, never seriously

considered the necessity to adapt the concepts of space-time to the new quantum

physics. On the contrary – Einstein seemed to have prioritized relativity over quan-

tum theory; the latter one he critically referred to as [21, p. 113] “noch nicht der

wahre Jakob” (“not yet the true [final] answer”). Time and again Einstein came

up with predictions of quantum mechanics which allegedly discredited the (final)

validity of quantum theory.

In a letter to Schrödinger dated June 19th, 1935 [22, 23] Einstein concretized

and clarified his uneasiness with quantum theory previously published in a paper

with Podolsky and Rosen [24] (“written by Podolsky after many discussions” [22]).

In this communication Einstein insisted that the wave function of a subsystem A of

(entangled) particles cannot depend on whatever measurements are performed on its

spatially separated (i.e. separated by a space-like interval) “twin” subsystem B: in

his own (translated from German 1) words: “The true state of B cannot depend on

which measurement I perform on A.” Pointedly stated, the “separability principle”

asserts that any two spatially separated systems possess their own separate real

state [23].

The separability principle is not satisfied for entangled states [25, 26]; in partic-

ular, if general two-partite state

|Ψ〉= ∑
i, j∈{−,+}

αi j|i j〉, with ∑
i, j∈{−,+}

|αi j |2 = 1

does not satisfy factorizability [12, p. 18] requiring α−−α++ = α+−α−+. That is,

if α−−α++ 6= α+−α−+, then |Ψ 〉 cannot be factored into products of single particle

states.

Even in his later years Einstein was inclined to take relativistic space-time as the

primary framework; thereby prioritizing it over fundamental quantum mechanical

inseparability; in particular, when it comes to multipartite situations [27, 23].

1 Einstein’s (underlined) original German text: “Der wirkliche Zustand von B kann nicht davon

abhängen, was für eine Messung ich an A vornehme.”
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5 Proximity and apartness in quantum mechanics

In what follows we propose that, when it comes to microphysical situations, in par-

ticular, when entanglement is involved, the provenance of classical relativity theory

over quantum mechanics has to be turned upside down: while entangled quanta may

epistemically (and for many practical purposes [28]) appear “separated,” or “apart,”

or “distinct” to a classical observer ignorant of their relational properties (cf. earlier

discussion in Section 2) encoded “across these quanta,” quantum mechanically they

are treated holistically “as one.”

The pretension of any such observer, or the possibility to actually perceive en-

tangled quanta as being “spatially separated” (by disregarding their correlations)

should not be seen as a principal property, but rather as a “means relative” one.

For the sake of an example, take the two-particle singlet Bell state |Ψ−〉 =
(1/

√
2)(|+−〉− |−+〉), which, by identifying |−〉 ≡ (0,1) and |+〉 ≡ (1,0), can

be identified with the four-dimensional vector whose components in tuple form are

|Ψ−〉 ≡ (1/
√

2)[(1,0)⊗ (0,1)− (0,1)⊗ (1,0)] = (1/
√

2)(0,1,−1,0). The separa-

bility principle is not satisfied, since 0 · 0 6= 1 · (−1). So, from the point of view of

those entangled state observables, the quanta appear inseparable.

And yet, the same quanta can be perfectly localized and distinguished by resolv-

ing them spatially. This situation – the occurrence of both inseparability and (spatial)

distinguishability – has caused a lot of confusion. This is particularly serious if one

of these distinct viewpoints on the quantized system, say, spatial separability and lo-

catedness of the particles, is meshed with the inseparability of the spin observables

when the latter ones are relationally defined. An yet, we might envision that, with

this dual situation we could get a handle on quantum inseparability (via encoding

of relational information) by spatially separated detectability of the quanta form-

ing this entangled state. Alas this is impossible, because the relational properties

do not reveal themselves by individual outcomes – only when all these (relational)

outcomes are considered together do the relational properties reveal themselves.

Of course, this would be totally different if it would be possible to wilfully force

any particular handle or side or component of the entangled state, thereby effectively

forcing the respective (relational property on the other handle or side or component.

So far, despite speculative attempts to utilize stimulated emission [29], there is no

indication that this might be physically feasible.

6 Summary

The first part of this article has been dedicated to quantum queries relating to prop-

erties which can be encoded in terms of (equi-)partitioning of states. We have been

particularly interested in the parity of products of binary states, and also in the par-

ity of Boolean functions; that is, dichotomic functions of bits. Thereby we have

presented criteria for the (non-) existence of quantum oracles.
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In the second part of this article we have argued that, instead of perceiving entan-

gled quanta in an a priori “space-time theater,” space-time is a secondary, derived

concept of our mind which needs to be operationally constructed by conventions

and observations. This is particularly true for multipartite entangled states, and their

spatio-temporal interconnectedness. Such an approach leaves no room for any hy-

pothetical inconsistency in quantum space-time, and no mind-boggling “peaceful

coexistence” with relativity theory.
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Company, New York and London, 2003.

19. June A. Lester. Distance preserving transformations. In Francis Buekenhout, editor, Handbook

of Incidence Geometry, pages 921–944. Elsevier, Amsterdam, 1995.

20. Gregory L. Naber. The Geometry of Minkowski Spacetime, volume 92 of Applied Mathe-

matical Sciences. ANU Quantum Optics, New York, Dordrecht, Heidelberg, London, second

edition, 2012.

21. Max Born. Physics in my generation. Springer, New York, second edition, 1969.

22. Albert Einstein. Letter to Schrödinger. Old Lyme, dated 19.6.35, Einstein Archives 22047

(searchable by document nr. 22-47), 1935.

23. Don Howard. Einstein on locality and separability. Studies in History and Philosophy of

Science Part A, 16(3):171–201, 1985.

24. Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of

physical reality be considered complete? Physical Review, 47(10):777–780, May 1935.

25. Erwin Schrödinger. Discussion of probability relations between separated systems. Mathe-

matical Proceedings of the Cambridge Philosophical Society, 31(04):555–563, 1935.
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