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Abstract

Some quantum cryptographic protocols can be implemented with specially
prepared metaphorical chocolate balls representing local hidden variables,
others protected by value indefiniteness cannot. This latter feature, which
follows from Bell- and Kochen-Specker type arguments, is only present in
systems with three or more mutually exclusive outcomes. Conversely, there
exist local hidden variable models based on chocolate ball configurations
utilizable for cryptography which cannot be realized by quantum systems.
The possibility that quantum cryptography supported by value indefiniteness
(contextuality) has practical advantages over more conventional quantum
cryptographic protocols remains highly speculative.
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1. Quantum resources for cryptography

Quantum cryptography 1 uses quantum resources to encode plain symbols
forming some message. Thereby, the security of the code against cryptana-
lytic attacks to recover that message rests upon the validity of physics, giving
new and direct meaning to Landauer’s dictum [36] “information is physical.”
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URL: http://tph.tuwien.ac.at/~svozil (Karl Svozil)

1In view of the many superb presentations of quantum cryptography — to name but a
few, see Refs. [24, 55] and [38, Chapter 6] (or, alternatively, [39, Section 6.2]), as well as
[44, Section 12.6]; apologies to other authors for this incomplete, subjective collection —
I refrain from any extensive introduction.
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What exactly are those quantum resources on which quantum cryptogra-
phy is based upon? Consider, for a start, the following qualities of quantized
systems:

(i) randomness of certain individual events, such as the occurrence of cer-
tain measurement outcomes for states which are in a superposition
of eigenstates associated with eigenvalues corresponding to these out-
comes;

(ii) complementarity, as proposed by Pauli, Heisenberg and Bohr;

(iii) value indefiniteness, as attested by Bell, Kochen & Specker, Green-
berger, Horne and Zeilinger, Pitowsky and others [1, 2] (often, this
property is referred to as “contextuality” [12, 6, 53]. Alas, contextual
truth assignments are just one possibility among others to cope with
the theorems mentioned, thereby providing a particular quasi-realistic,
but not necessarily the only possible, “solution” or “interpretation” of
those theorems [64]);

(iv) interference and quantum parallelism, allowing the co-representation of
classically contradicting states of information by a coherent superposi-
tion thereof;

(v) entanglement of two or more particles, as pointed out by Schrödinger,
such that their state cannot be represented as the product of states of
the isolated, individual quanta, but is rather defined by the joint or
relative properties of the quanta involved.

The first quantum cryptographic protocols, such as the ones by Wies-
ner [71] and Bennett & Brassard [8, 7], just require complementarity and
random individual outcomes. It may well be that a different quantum cryp-
tographic scheme that uses stronger or additional powers provided by quan-
tum theory, such as value indefiniteness (or, by another term, contextuality)
manifesting itself in Bell- or Kochen-Specker type theorems [56, 34, 73, 3, 4,
31, 32, 37, 49, 28], will provide an advantage over these former protocols.

Even nowadays it is seldom acknowledged that, when it comes to value
definiteness, there definitely is a difference between two- and three-dimensional
Hilbert space. This difference can probably be best explained in terms of
(conjugate) bases: whereas different bases in two-dimensional Hilbert space
are disjoint and totally separated (they do not share any vector), from three
dimensions onwards, they may share common elements. It is this inter-
connectedness of bases and “frames” which supports both the Gleason and
the Kochen-Specker theorems. This can, for instance, be used in derivations
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of the latter one in three dimensions, which effectively amount to a succes-
sion of rotations of bases along one of their elements (the original Kochen-
Specker [34] proof uses 117 interlinked bases), thereby creating new rotated
bases, until the original base is reached. Note that certain (even dense [40])
“dilutions” of bases break up the possibility to interconnect, thus allowing
value definiteness.

The importance of these arguments for physics is this: since in quantum
mechanics the dimension of Hilbert space is determined by the number of
mutually exclusive outcomes, a necessary condition for a quantum system
to be protected by value indefiniteness thus is that the associated quantum
system has at least three mutually exclusive outcomes; two outcomes are
insufficient for this purpose. Of course, one could argue that systems with
two outcomes are still protected by complementarity.

This article addresses two issues: a critical re-evaluation of quantum cryp-
tographic protocols in view of quantum value indefiniteness; as well as sug-
gestions to improve them to assure the best possible protection “our” [13,
p. 866] present quantum theory can afford. In doing so, a toy model will
be introduced which implements complementarity but still is value definite.
Then it will be exemplified how to do perform “quasi-classical” quantum-like
cryptography with these models. Finally, methods will be discussed which
go beyond the quasi-classical realm.

2. Realizations of quantum cryptographic protocols

Let us, for the sake of demonstration, discuss a concrete “toy” system
which features complementarity but (not) value (in)definiteness. It is based
on the partitions of a set. Suppose the set is given by S = {1, 2, 3, 4}, and con-
sider two of its equipartitions A = {{1, 2}, {3, 4}} and B = {{1, 3}, {2, 4}},
as well as the usual set theoretic operations (intersection, union and comple-
ment) and the subset relation among the elements of these two partitions.
Then A and B generate two Boolean algebras LA = {∅, {1, 2}, {3, 4}, S} and
LB = {∅, {1, 3}, {2, 4}, S} which are equivalent to a Boolean algebra with
two atoms a1 = {1, 2} & a2 = {3, 4}, as well as b1 = {1, 3} & b2 = {2, 4} per
algebra, respectively. Then, the partition logic [59, 60, 64] consisting of two
Boolean subalgebras LA ⊕ LB = LA,B = 〈{LA, LB},∩,∪,

′ ,⊂〉 is obtained
as a pasting construction (through identifying identical elements of subalge-
bras [25, 43, 30]) from LA and LB: only elements contribute which are in LA,
or in LB, or in both of them (i.e. in LA∩LB) – the atoms of this algebra being
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Figure 1: (Color online) (a) Greechie diagram of LA,B, consisting of two separate Boolean
subalgebras LA and LB; (b) two-dimensional Hilbert space configuration of spin- 1

2
state

measurements along two non-collinear directions. As there are only two mutually exclusive
outcomes, the dimension of the Hilbert space is two.

the elements a1, . . . , b2 – and all common elements. In the present case only
the smallest and greatest elements ∅ and S – are identified. LA,B “inherits”
the operations and relations of its subalgebras (also called blocks or contexts)
LA and LB. This pasting construction yields a non-distributive and thus
non-boolean, orthocomplemented propositional structure [30, 50]. Nondis-
tributivity can quite easily be proven, as a1 ∧ (b1 ∨ b2) 6= (a1 ∧ b1)∨ (a1 ∧ b2),
since b1∨b2 = S, whereas a1∧b1 = a1∧b2 = ∅. Note that, although a1, . . . , b2
are compositions of elements of S, not all elements of the power set of S as-
sociated with a Boolean algebra with four atoms, such as {1} or {1, 2, 3}, are
contained in LA,B.

Figure 1(a) depicts a Greechie (orthogonality) diagram [25] of LA,B, which
represents elements in a Boolean algebra as single smooth curves; in this case
there are just two atoms (least elements above ∅) per subalgebra; and both
subalgebras are not interconnected.

Several realizations of this partition logic exist; among them

(i) the propositional structure [11, 59] of spin state measurements of a
spin-1

2
particle along two non-collinear directions, or of the linear polar-

ization of a photon along two non-orthogonal, non-collinear directions.
A two-dimensional Hilbert space representation of this configuration is
depicted in Figure 1(b). Thereby, the choice of the measurement direc-
tion decides which one of the two complementary spin state observables
is measured;

(ii) generalized urn models [72, 20] utilizing black balls painted with two
or more symbols in two or more colors. Suppose, for instance, just
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two symbols “0” and “1” in just two colors, say, “pink” and “light

blue”, resulting in four types of conceivable balls: 00 , 01 , 10 , as

well as 11 — many copies of which are randomly distributed in an
urn. Suppose further that the experimenter looks at them with one of
two differently colored eyeglasses, each one ideally matching the colors
of only one of the symbols, such that only light in this wave length
passes through. Thereby, the choice of the color decides which one of
the two complementary observables associated with “pink” and “light
blue” is measured. Propositions refer to the possible ball types drawn
from the urn, given the information printed in the chosen color. For
further details about chocolate ball cryptography based on generalized

urn models resulting in partition logics, we refer to Refs. [63, 60].

(iii) initial state identification problem for deterministic finite (Moore or
Mealy) automata in an unknown initial state [41, 60]; in particular
ones 〈S, I, O, δ, λ〉 with four internal states S = {1, 2, 3, 4}, two input
and two output states I = O = {0, 1}, an “irreversible” (all-to-one)
transition function δ(s, i) = 1 for all s ∈ S, i ∈ I, and an output
function “modelling” the state partitions by λ(1, 0) = λ(2, 0) = 0,
λ(3, 0) = λ(4, 0) = 1, λ(1, 1) = λ(3, 1) = 0, λ(2, 1) = λ(4, 1) = 1.
Thereby, the choice of the input symbol decides which one of the two
complementary observables is measured. For further details about the
initial state identification problem of finite automata resulting in parti-

tion logics, we refer to Refs. [60, 64].

Let us, for the moment, consider generalized urn models, because they
allow a “pleasant” representation as chocolate balls coated in black foils and

painted with color symbols.2 With the four types of chocolate balls 00 , 01 ,

10 , and 11 drawn from an urn it is possible to execute the 1984 Bennett-
Brassard (BB84) protocol [8, 7] and “generate” a secret key shared by two
parties [63]. Formally, this reflects (i) the random draw of balls from an urn,
as well as (ii) the complementarity modeled via the color painting and the
colored eyeglasses. It also reflects the possibility to embed this model into a
bigger Boolean (and thus classical) algebra 24 by “taking off the eyeglasses”
and looking at both symbols of those four balls types simultaneously. The

2In an “early bird” breakfast setup for Canadian politicians, Gilles Brassard used boiled
eggs instead of chocolate balls.
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atoms of this Boolean algebra are just the ball types, associated with the

four cases 00 , 01 , 10 , and 11 . The possibility of a classical embedding is
also reflected in a “sufficient” number (i.e., by a separating, full set) of two-
valued, dispersionless (only the sharp values “0” and “1” are allowed) states
P (a1) + P (a2) = P (b1) + P (b2) = 1, with P (x) ∈ {0, 1}. These two-valued
states can also be interpreted as logical truth assignments, irrespective of
whether the observables have been (co-)measured.

When comparing BB84-type cryptography with quanta and chocolate
balls, one has to keep in mind that the similarities with respect to com-
plementarity appear somewhat superficial with regards to the state of the
objects communicated after any measurement. Because even if an eavesdrop-
per, say Eve, sticks to the rules of the game by putting on colored eyeglasses,
any of her measurements would not affect or change the type of ball, and
thus would not cause any disturbance of the objects communicated, thereby
not causing any measurement errors between Alice and Bob. This is different
from quantum complementarity and quantum cryptography protected by it,
for if Eve would choose a different observable than Bob she would inevitably
alter the state transferred. This amounts to a disturbance which makes it
possible for Alice and Bob to recognize Eve’s cryptanalytic attack through
occasional measurement errors; at least if Eve is incapable of controlling the
classical channel between the two. Of course one could alleviate this defi-
ciency of the quasi-classical analogue by requiring Eve not to communicate
the original object received from Bob, but by redrawing from the urn and
sending Alice another object consistent with Eve’s measurement.

The possibility to ascribe certain “ontic states” interpretable as observer-
independent “omniscient elements of physical reality” (in the sense of Ein-
stein, Podolsky and Rosen [21, p. 777], a paper which amazingly contains
not a single reference) even for complementarity observables may raise some
skepticism or even outright rejection, since that is not how quantum mechan-
ics is known to perform at its most mind-boggling mode. Indeed, so far, the
rant presented merely attempted to convince the reader that one can have
complementarity as well as value definiteness; i.e., complementarity is not
sufficient for value indefiniteness in the sense of the Bell- and Kochen-Specker
argument.

Unfortunately, the two-dimensionality of the associated Hilbert space is
also a feature plaguing present random number generators based on beam
splitters [58, 51, 29, 57]. In this respect, most of the present random number
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generators using beam splitters are protected by the randomness of single
outcomes as well as by complementarity, but not by certified value indef-
initeness [5, 17, 65, 48], as guaranteed by quantum theory in its standard
form [68]. Their methodology should also be improved by the methods dis-
cussed below.

3. Supporting cryptography with value indefiniteness

Fortunately, quantum mechanics is more resourceful and mind-boggling
than that, as it does not permit any two-valued states which may be ontolog-
ically interpretable as elements of physical reality. So we have to go further,
reminding ourselves that value indefiniteness comes about only for Hilbert
spaces of dimensions three and higher. There are several ways of doing this.
The following options will be discussed:

(i) the known protocols can be generalized to three or more outcomes [5];

(ii) entangled pairs of particles [22] associated with statistical value indef-
initeness may be considered;

(iii) full, non-probabilistic value indefiniteness may be attempted, at least
counterfactually.

3.1. Generalizations to three and more outcomes

In constructing quantum random number generators via beam splitters
which ultimately are used in cryptographic setups, it is important (i) to have
full control of the particle source, and (ii) to use beam splitters with three
or more output ports, associated with three- or higher-dimensional Hilbert
spaces. Thereby, the question of whether it is sufficient for this purpose to
compose a multiport beam splitter by a succession of phase shifters and beam
splitters with two output ports [52, 61], based on elementary decompositions
of the unitary group [42] remains to be answered.

Dichotomic sequences could be obtained from sequences containing more
than two symbols by discarding all other symbols from that sequence [16], or
by identifying the additional symbols with one (or both) of the two symbols.
For standard normalization procedures and their issues, the reader is referred
to Refs. [69, 54, 23, 47, 19, 35].

One concrete realization would be a spin-3
2
particle. Suppose it is prepared

in one of its four spin states, say the one associated with angular momentum
+3

2
~ in some arbitrary but definite direction; e.g., by a Stern-Gerlach device.
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Then, its spin state is again measured along a perpendicular direction; e.g.,
by another, differently oriented, Stern-Gerlach device. Two of the output
ports, say the ones corresponding to positive angular momentum +3

2
~ and

+1

2
~, are identified with the symbol “0,” the other two ports with the symbol

“1.” In that way, a random sequence is obtained from quantum coin tosses
which can be ensured to operate under the conditions of value indefiniteness
in the sense of the Kochen-Specker theorem. Of course, this protocol can also
be used to generate random sequences containing four symbols (one symbol
per detector).

With respect to the use of beam splitters, the reader is kindly reminded
of another issue related to the fact that beam splitters are reversible de-
vices capable of only translating an incoming signal into an outgoing signal
in a one-to-one manner. The “non-destructive” action of a beam splitter
could also be demonstrated by “reconstructing” the original signal through
a “reversed” identical beam splitter in a Mach-Zehnder interferometer [27].
In this sense, the signal leaving the output ports of a beam splitter is “as
good” for cryptographic purposes as the one entering the device. This fact
relegates considerations of the quality of quantum randomness to the qual-
ity of the source. Every care should thus be taken in preparing the source
to assure that the state entering the input port (i) either is pure and could
subsequently be used for measurements corresponding to conjugate bases,
(ii) or is maximally mixed, resulting in a representation of its state in finite
dimensions proportional to the unit matrix.

3.2. Configurations with statistical value indefiniteness

Protocols like the Ekert protocol [22] utilize two entangled two-state par-
ticles for a generation of a random key shared by two parties. The particular
Einstein-Podolsky-Rosen configuration [21] and the singlet Bell state com-
municated among the parties guarantee stronger-than-classical correlations
of their sequences, resulting in a violation of Bell-type inequalities obeyed by
classical probabilities.

Although criticized [10] on the grounds that the Ekert protocol in cer-
tain cryptanalytic aspects is equivalent to existing ones (see Ref. [9] for a
reconciliation), it offers additional security in the light of quantum value
indefiniteness, as it suggests to probe the non-classical parts of quantum
statistics. This can best be understood in terms of the impossibility to gen-
erate co-existing tables of all – even the counterfactually possible – measure-
ment outcomes of the quantum observables used [46]. This, of course, can
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only happen for the four-dimensional Hilbert space configuration proposed
by Ekert, and not for effectively two-dimensional ones of previous proposals.

Because if the Ekert protocol would be executed with chocolate balls
instead of suitable quanta, the data would not violate the classical bounds
predicted by quantum theory. This is due to the fact that chocolate ball
models are local hidden variable models. Thereby, the Ekert protocol would
clearly indicate a conceivable cryptanalytic attack – for instance, by looking
simultaneously at all the symbols in all the different colors painted on the
chocolate balls.

Suppose one would nevertheless attempt to “mimic” an Ekert type proto-
col proposed by Bennett, Brassard and Mermin (BBM92) [10] with a classical

“singlet” state which uses compositions of two balls of the form 00—11 /

01—10 / 10—01 / 11—00 , with strictly different (alternatively strictly
identical) particle types. The resulting probabilities and expectations would
obey the classical Clauser-Horne-Shimony-Holt bounds [18]. This is due to
the fact that generalized urn models have quasi-classical probability distri-
butions which can be represented as convex combinations of the full set of
separable two-valued states on their observables.

3.3. Nonprobabilistic value indefiniteness

In an attempt to fully utilize quantum value indefiniteness, we propose
a generalization of the BB84 protocol on a propositional structure which
does not allow any two-valued state. In principle, this could be any kind of
finite configuration of observables in three- and higher-dimensional Hilbert
space; in particular ones which have been proposed for a proof of the Kochen-
Specker theorem.

For the sake of a concrete example, we shall consider a variant of the
tightly interlinked collection of observables in four-dimensional Hilbert space
presented by Cabello, Estebaranz and Garćıa-Alcaine [15, 14], which is de-
picted in Figure 2. (Their original configuration using only 9 contexts would
also suffice for the following argument.) Instead of two measurement bases
of two-dimensional Hilbert space used in the BB84 protocol, 24 such bases of
four-dimensional Hilbert space, corresponding to the 24 smooth (unbroken)
orthogonal curves in Fig. 2 are used. In what follows, it is assumed that
any kind of random decision has been prepared according to the protocol for
generating random sequences sketched above.
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(0, 1,−1, 0)

(0, 0, 1,−1)

(1, 0, 0, 1)

(1,−1, 0, 0)

(−1, 1, 1, 1)

(1, 1, 1, 1)

(1, 1, 1,−1)

(1, 1,−1,−1)

(1, 1,−1, 1)(0, 1, 1, 0)

(1,−1, 1,−1)(0, 0, 1, 1)

(1, 0, 1, 0)(0, 0, 0, 1)

(1, 0,−1, 0)(0, 1, 0, 0)

(0, 1, 0,−1)(1, 0, 0, 0)

Figure 2: (Color online) Greechie orthogonality diagram of a “short” proof [15, 14] of
the Kochen-Specker theorem in four dimensions containing 24 vectors whose linear span
can be identified with propositions [11] in 24 tightly interlinked contexts [67]. The graph
cannot be colored by the two colors red (associated with truth) and green (associated with
falsity) such that every context contains exactly one red and three green points. For the
sake of a proof, consider just the six outer lines and the three outer ellipses. Indeed, in
a table containing the points of the contexts as columns and the enumeration of contexts
as rows, every red point occurs in exactly two such contexts, and thus there should be
an even number of red points. On the other hand, there are 9 contexts involved; thus by
the rules it follows that there should be an odd number (i.e. 9) of red points in this table
(exactly one per context).
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(1, 0, 0, 0) (0, 1, 1, 0) (0, 1,−1, 0) (0, 0, 0, 1)

(0, 1, 0, 0)

(1, 0,−1, 0)

(1, 0, 1, 0)

(0, 0, 1,−1)

(0, 0, 1, 1)

(1, 0, 0) (0, 1, 1) (0, 1,−1)

(0, 1, 0)

(0, 0, 1)

(a) (b)

Figure 3: (Color online) Subdiagrams of Figure 2 allowing (value definite) chocolate ball
realizations.

(i) In the first step, “Alice” randomly picks an arbitrary basis from the 24
available ones, and sends a random state to “Bob.”

(ii) In the second step, Bob independently from Alice, picks some (not
necessarily different from Alice’s) basis at random, and measures the
particle received from Alice.

(iii) In the third step, Alice and Bob compare their bases over a public
channel, and keep only those events which were recorded in a common
basis.

(iv) Both then exchange some of the matching outcomes over a public chan-
nel to assure that nobody has attended their quantum channel.

(v) Bob and Alice encode the four outcomes by four or less different sym-
bols. As a result, Bob and Alice share a common random key certified
by quantum value indefiniteness.

The advantage of this protocol resides in the fact that it does not allow
its realization by any partition of a set, or any kind of colored chocolate balls.
Because if it did, any such coloring could be used to generate “classical” two-
valued states, which in turn may be used towards a classical re-interpretation
of the quantum observables; an option ruled out by the Kochen-Specker
theorem.
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For the sake of an explicit demonstration, a simplified version of the
protocol, which is based on a subdiagram of Figure 2, contains only three
contexts, which are closely interlinked. The structure of observables is de-
picted in Figure 3(a). The vectors represent observables in four-dimensional
Hilbert space in their usual interpretation as projectors generating the one-
dimensional subspaces spanned by them. In addition to this quantum me-
chanical representation, and in contrast to the Kochen-Specker configuration
in Figure 2, this global collection of observables still allows for value definite-
ness, as there are “enough” two valued states permitting the formation of a
partition logic and thus a chocolate ball realization; e.g.,

{{{1, 2}, {3, 4, 5, 6, 7}, {8, 9, 10, 11, 12}, {13, 14}},
{{1, 4, 5, 9, 10}, {2, 6, 7, 11, 12}, {3, 8}, {13, 14}},
{{1, 2}, {3, 8}, {4, 6, 9, 11, 13}, {5, 7, 10, 12, 14}}}.

The three partitions of the set {1, 2, . . . , 14} have been obtained by indexing
the atoms in terms of all the non-vanishing two-valued states on them [60, 64],
as depicted in Figure 4. They can be straightforwardly applied for a chocolate
ball configuration with three colors (say pink, light blue, and yellow) and
four symbols (say 0, 1, 2, and 3). The 14 ball types corresponding to the 14

different two-valued measures are as follows: 000 , 010 , 121 , 102 , 103 ,

112 , 113 , 221 , 202 , 203 , 212 , 213 , 332 , and 333 .
Figure 3(b) contains a three-dimensional subconfiguration with two com-

plementary contexts interlinked in a single observable. It again has a value
definite representation in terms of partitions of a set, and thus again a choco-

late ball realization with three symbols in two colors; e.g., 00 , 11 , 12 , 21 ,

and 22 .

4. Noncommutative chocolate cryptography which cannot be real-

ized quantum mechanically

Quantum mechanics does not allow a “triangular” structure of observ-
ables similar to the one depicted in Fig. 3 with three instead of four atoms
per block (context), since no geometric configuration of tripods exist in three-
dimensional vector space which would satisfy this scheme. (For a different
propositional structure not expressible by quantum mechanics, see Specker’s
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Figure 4: Two-valued states interpretable as global truth functions of the observables
depicted in Figure 3(a). Encircled numbers count the states, smaller numbers label the
observables.
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Figure 5: Two-valued states on triangular propositional structure with three atoms per
context or block.

programmatic article [56] from 1960.) It contains six atoms 1, . . . , 6 in the
blocks 1–2–3, 3–4–5, 5–6–1. In order to obtain a partition logic on which the
chocolate ball model can be based, the four two-valued states are enumerated
and depicted in Figure 5.

The associated partition logic is given by

{{{1}, {2}, {3, 4}},
{{1, 4}, {2}, {3}},
{{1}, {2, 4}, {3}}}.

Every one of the three partitions of the set {1, . . . , 4} of ball types labeled by
1 through 4 corresponds to a color; and there are three symbols per colors.
For the first (second/third) partition, the propositions associated with these
protocols are:

• “when seen through light of the first (second/third) color (e.g., pink/light
blue/yellow), symbol “0” means ball type number 1 (2/3);”

• “when seen through light of the first (second/third) color (e.g., pink/light
blue/yellow), symbol “1” means ball type number 3 or 4 (1 or 4/2 or
4);”

• “when seen through light of the first (second/third) color (e.g., pink/light
blue/yellow), symbol “2” means ball type number 2 (3/1).”

More explicitly, there are four ball types of the form 012 , 201 , 120 , and

111 . The resulting propositional structure is depicted in Fig. 6. With
respect to conceivable realizations, cryptographic protocols – such as the
one sketched above – based on this structure are “stranger than quantum
mechanical” ones.
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{1} {3, 4} {2}

{3}

{1, 4}{2, 4}

Figure 6: (Color online) Propositional structure allowing (value definite) chocolate ball
realizations with three atoms per context or block which does not allow a quantum ana-
logue.

5. Summary and discussion

It has been argued that value indefiniteness rather than complementarity
could be used as a quantum resource against cryptanalytic attacks. One
reason for this suggestion is that certain types of complementarity can be
mimicked by quasi-classical configurations, whereas there cannot exist a non-
contextual (quasi-)classical analogue of quantum value indefiniteness.

The formal reason for the impossibility of (quasi-)classical models in the
latter case is the non-existence of any two-valued measures on the propo-
sitional structure resulting from the associated observables; at least with
the assumptions (e.g. non-contextuality) made. Constructive proofs (by
contradiction) of this formal result has yielded Kochen-Specker type theo-
rems [56, 34, 73, 3, 4, 31, 32, 37, 49, 28].

By contrast, complementarity may still allow quasi-classical observables
and propositional structures with a sufficient number of two-valued states to
admit a homeomorphic embedding into a classical Boolean algebra [59].

Configurations associated with merely statistical violations of Bell-type
inequalities are in-between those two extremes because they still allow “a
few” two-valued states which can be used for the coloring of certain types
of chocolate balls; however these states are insufficient to render a faithful
embedding into Boolean algebras. If in such cases one insists in tabular-
izing potential physical properties, these have to be “occationally” contex-
tual [66]. Thus quantitatively – that is in terms of the necessary violations
of non-contextuality – some of the protocols suggested here, by explicitly
using Kochen-Specker type constructions, utilize even “more” non-classical
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resources of quantum mechanics than the Ekert protocol based on Bell-type
inequalities.

Furthermore, simple schemes, such as BB84, with have conceivable (quasi-
)classical models such as the ones mentioned here, cannot be implemented
in a way that remains secure even if one cannot trust whoever provided
the hardware, but Ekert-type protocols based on Bell-type inequalities can.
This implementation of device-independent quantum cryptography, where
one needs not trust the person who built the hardware, already utilize a
statistical form of quantum value indefiniteness.

From a purely operational, phenomenological point of view, all that can
be measured are violations of certain statistical predictions. There does not
exist any direct way of simultaneously testing this non-classical quantum be-
havior on individual particles [62], even in the Kochen-Specker [14, 33] or
Greenberger-Horne-Zeilinger [26, 45] type configurations. Nevertheless, in
other research areas, such as for instance with regard to quantum random
number generators, the additional security gained by monitoring value indef-
initeness or contextuality is often perceived as an advantage [5, 17, 65, 48].
In this sense, the new protocol may present some advantage over the BB84,
and even the Ekert protocols. Thus when it comes to fully harvesting the
quantum, it might not be too unreasonable to utilize value indefiniteness, one
of its most “mind-boggling” features encountered if one assumes the physical
relevance of non-operational yet counterfactual observables.

We have also mentioned more “exotic” protocols utilizing quasi-classical
empirical propositional structures that go beyond quantum mechanics. These
logical structures cannot be realized in Hilbert space of any dimension be-
cause there is no realization in the Birkhoff-von Neumann type quantum logic
of, say, a set of quantum propositions realizing the triangle Greechie diagram
depicted in Fig. 6, with three atoms per block. Whether such configurations
can be implemented remains highly speculative, because on the one hand,
the quasi-classical chocolate ball models considered here can be easily com-
promised by just looking at the balls without any filter. On the other hand,
if quantum mechanics is universally valid, such interconnections of (blocks
of three) observables simply do not exist.

It is important to emphasize that the contention suggesting that quan-
tum cryptography supported with value indefiniteness (contextuality) might
have practical advantages over more conventional quantum cryptographic
techniques, remains highly speculative.
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