
Chapter 10

Physical Unknowables
Karl Svozil

As we know, there are known knowns;

there are things we know we know.

We also know there are known unknowns;

that is to say we know there are some things we do not know.

But there are also unknown unknowns –

the ones we don’t know we don’t know.

– United States Secretary of Defense Donald H. Rumsfeld

at a Department of Defense news briefing on February 12, 2002

Ei mihi, qui nescio saltem quid nesciam!

(Alas for me, that I do not at least know the extent of my own

ignorance!)

– Aurelius Augustinus, 354–430, “Confessiones” (Book XI, chapter

25)

10.1 Rise and fall of determinism

In what follows, a variety of physical unknowables will be discussed.

Provable lack of physical omniscience, omnipredictability and om-

nipotence is derived by reduction to problems that are known to be

recursively unsolvable. “Chaotic” symbolic dynamical systems are un-
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stable with respect to variations of initial states. Quantum unknow-

ables include the random occurrence of single events, complementar-

ity, and value indefiniteness.

From antiquity onward, various waves of (in)determinism have in-

fluenced human thought. Regardless of whether they were shaped by

some Zeitgeist, or whether, as Goethe’s Faust puts it, “what you the

Spirit of the Ages call, is nothing but the spirit of you all, wherein

the Ages are reflected,” their proponents have sometimes vigorously

defended their stance in irrational, unscientific, and ideologic ways.

Indeed, from an emotional point of view, may it not appear fright-

ening to be “imprisoned” by remorseless, relentless predetermination,

even in a dualistic setup (Descartes, 1641); and, equally frightening, to

accept that one’s fate depends on total arbitrariness and chance? Does

determinism expose freedom, self-determination and human dignity as

an idealistic illusion? On the other extreme, what kind of morale, mer-

its and efforts appear worthy in a universe governed by pure chance?

Is there some reasonable in-between straddling those extreme positions

that may also be consistent with science?

We shall, for the sake of separating the scientific debate from emo-

tional overtones and possible bias, adopt a contemplative strategy of

evenly-suspended attention outlined by Freud (1999), who admonishes

analysts to be aware of the dangers caused by “temptations to project,

what [the analyst] in dull self-perception recognizes as the peculiarities

of his own personality, as generally valid theory into science.” Nature

is thereby treated as a client-patient, and whatever findings come up

are accepted as is without any immediate emphasis or judgment.

10.1.1 Toward explanation and feasibility

Throughout history, the human desire to foresee and manipulate the

physical world for survival and prosperity, and in accord with personal

wishes and fantasies, has been confronted with the inability to predict

and manipulate large portions of the habitat. As time passed, people
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have figured out various ways to tune ever increasing fragments of the

world according to their needs. From a purely behavioral perspective,

this is brought about in the way of pragmatic quasi-causal conditional

rules of the following kind, “if one does this, one obtains that.” A

typical example of such a rule is “if I rub my hands, they get warmer.”

How does one arrive at those kinds of rules? Guided by suspicions,

thoughts, formalisms and by pure chance, inquiries start by roaming

around, inspecting portions of the world and examining their behav-

ior. Repeating phenomena or patterns of behavior are observed and

pinned down by reproducing and evoking them. A physical behav-

ior is anything that can be observed and thus operationally obtained

and measured; for example, the rise and fall of the sun, the ignition of

fire, the formation and melting of ice (in principle even time series of

financial entities traded at stock exchanges or over-the-counter).

As physical behaviors are observed, people attempt to understand

them by trying to figure out some cause (Schlick, 1932; Frank, 1932) or

reason for their occurrences. Researchers invent virtual parallel worlds

of thoughts and intellectual concepts such as “electric field” or “me-

chanical force” to explain and manipulate the physical behaviors, call-

ing these creations of their minds “physical theories.” Contemporary

physical theories are heavily formalized and spelled out in the language

of mathematics. A good theory provides people with the feeling of a

key unlocking new ways of world comprehension and manipulation.

Ideally, an explanation should be as compact as possible and should

apply to as many behavioral patterns as possible.

Ultimately, theories of everything (Schlick, 1935; Barrow, 1991;

Kragh, 1999) should be able to predict and manipulate all phenomena.

In the extreme form, science becomes omniscient and omnipotent, and

we envision ourselves almost as becoming empowered with magic: we

presume that our ability to manipulate and tune the world is limited

by our fantasies alone, and any constraints whatsoever can be bypassed

or overcome one way or another. Indeed, some of what in the past
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has been called “supernatural,” “mystery,” and “the beyond” has been

realized in everyday life. Many wonders of witchcraft have been trans-

ferred into the realm of the physical sciences. Take, for example, our

abilities to fly, to transmute mercury into gold (Sherr et al., 1941), to

listen and speak to far away friends, or to cure bacterial diseases with a

few pills of antibiotics.

Until about 1900, the fast-growing natural sciences, guided by

rational (Descartes, 1637) and empirical (Locke, 1690; Hume, 1748)

thinking, and seconded by the European Enlightenment, prospered

under the assumption of physical determinism. Under the aegis of

physical determinism, all incapacities to predict and manipulate phys-

ical behavior were interpreted to be merely epistemic in nature, pur-

porting that, with growing precision of measurements and improve-

ments of theory, all physical unknowables will eventually be overcome

and turned into knowables; that is, everything should in principle be

knowable. Even statistical quantities would describe underlying deter-

ministic behaviors. Consequently, there could not exist any physical

behavior or entity without a cause stimulating or pushing it into exis-

tence.

The uprise of determinism culminated in the following statement

by Laplace (1998, chap. 2):

Present events are connected with preceding ones by a tie

based upon the evident principle that a thing cannot occur

without a cause which produces it. This axiom, known by

the name of the principle of sufficient reason, extends even

to actions which are considered indifferent . . .

We ought then to regard the present state of the universe

as the effect of its anterior state and as the cause of the one

which is to follow. Given for one instant an intelligence

which could comprehend all the forces by which nature

is animated and the respective situation of the beings who

compose it an intelligence sufficiently vast to submit these
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data to analysis it would embrace in the same formula the

movements of the greatest bodies of the universe and those

of the lightest atom; for it, nothing would be uncertain and

the future, as the past, would be present to its eyes.

The invention of (analytic) functions reflects this paradigm quite

nicely: some dispersionless point coordinate x(t ) of infinite preci-

sion serves as the representation (Hertz, 1894) of a physical state as

a (unique) function of physical time t .

Indeed, the possibility to formulate theories per se, and in particu-

lar, the applicability of formal, mathematical models, comes as a mind-

boggling surprise and cannot be taken for granted; there appears to be

what Wigner (1960) called an “unreasonable effectiveness of mathemat-

ics in the natural sciences.” Even today, there is a Pythagorean consen-

sus that there is no limit to dealing with physical entities in terms of

mathematical formalism. And, as mathematics increasingly served as a

proper representation of reality, and computational deduction systems

were increasingly introduced to delineate formalizable truth, algorith-

mics started to become a metaphor for physics. In algorithmic terms,

nature computes, and can be (re)programmed to perform certain tasks.

The natural sciences continued to be uninhibited by any sense

of limits until about fin-de-siècle, around 1900. In parallel, the for-

malization of mathematics progressed in an equally uninhibited way.

Hilbert (1926, 170) argued that nobody should ever expel mathemati-

cians from the paradise created by Cantor’s set theory and posed a chal-

lenge (Hilbert, 1902) to search for a consistent, finite system of formal

axioms which would be able to render all mathematical and physical

truths; just like quasi-finitistic ways to cope with infinitesimal calculus

had been found.

This type of belief system that claims omniscience could be called

“deterministic conjecture” because no proof for its validity can be

given, nor is there any way of falsification (Popper, 1959). Alas, from

a pragmatic point of view, omniscience can be effectively disproved on
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a daily basis by tuning in to local weather forecasts.

Furthermore, it seems to be an enduring desire of human nature

to be able not merely to trust the rules and theories syntactically and

operationally (Bridgman, 1934) but also to be able to semantically in-

terpret them as implying and carrying some ontological significance

or truth – as if reality would communicate with us, mediated through

our senses, thereby revealing the laws governing nature. Stated point-

edly, we not only wish to accept physical theories as pure abstrac-

tions and constructions of our own mind (Berkeley, 1710) but we as-

sociate meaning and truth to them so much so that only very reluc-

tantly do we admit their preliminary, transient, and changing character

(Lakatos, 1978).

10.1.2 Rise of indeterminism

Almost unnoticed, the tide of indeterminism started to build toward

the end of the nineteenth century (Purrington, 1997; Kragh, 1999). At

that time, mechanistic theories faced an increasing number of anoma-

lies: Poincaré’s discovery of instabilities of trajectories of celestial bod-

ies (which made them extremely sensible to initial conditions), radioac-

tivity (Kragh, 1997, 2009), X-rays, specific heats of gases and solids,

emission and absorption of light (in particular, blackbody radiation),

the (ir)reversibility dichotomy between classical reversible mechanics

and Boltzmann’s statistical-mechanical theory of entropy versus the

second law of thermodynamics, and the experimental refutation of

classical constructions of the ether as a medium for the propagation

of light waves.

After the year 1900 followed a short period of revolutionary new

physics, in particular, quantum theory and relativity theory, without

any strong inclination toward (in)determinism. Then indeterminism

erupted with Born’s claim that quantum mechanics has it both ways:

the quantum state evolves strictly deterministically, whereas the in-

dividual event or measurement outcome occurs indeterministically.
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Born also stated that he believed that there is no cause for an individual

quantum event; that is, such an outcome occurs irreducibly at random.

There followed a fierce controversy, with many researchers such as

Born, Bohr, Heisenberg, and Pauli taking the indeterministic stance,

whereas others, like Planck (Born, 1955), Einstein (Einstein et al.,

1935; Einstein, 1938), Schrödinger, and De Brogli, leaning toward de-

terminism. This latter position was pointedly put forward by Ein-

stein’s dictum in a letter to Born, dated December 12, 1926 (Born,

1969, 113): “In any case I am convinced that he [the Old One] does not

throw dice.” At present, indeterminism is clearly favored, the canon-

ical position being expressed by Zeilinger (2005): “The discovery that

individual events are irreducibly random is probably one of the most

significant findings of the twentieth century. . . . For the individual

event in quantum physics, not only do we not know the cause, there

is no cause.”

The last quarter of the twentieth century saw the rise of yet an-

other form of physical indeterminism, originating in Poincaré’s afore-

mentioned discovery of instabilities of the motion of classical bodies

against variations of initial conditions (Campbell & Garnett, 1882;

Poincaré, 1914; Diacu & Holmes, 1996). This scenario of deterministic

chaos resulted in a plethora of claims regarding indeterminism that res-

onated with a general public susceptible to fables and fairy tales (Bric-

mont, 1996).

In parallel, Gödel’s incompleteness theorems (Gödel, 1931; Tarski,

1932; Davis, 1958, 1965; Smullyan, 1992a), as well as related findings

in the computer sciences (Turing, 1937; Chaitin, 1987a; Calude, 2002;

Grünwald & Vitányi, 1987), put an end to Hilbert’s program of find-

ing a finite axiom system for all mathematics. Gödel’s incompleteness

theorems also established formal bounds on provability, predictabil-

ity, and induction. (The incompleteness theorems also put an end to

philosophical contentions expressed by Schlick (1935, 101) that, be-

yond epistemic unknowables and the “essential incompetence of hu-
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man knowledge,” there is “not a single real question for which it would

be logically impossible to find a solution.”)

Alas, just like determinism, physical indeterminism cannot be

proved, nor can there be given any reasonable criterion for its falsi-

fication. After all, how can one check against all laws and find none

applicable? Unless one is willing to denote any system whose laws are

currently unknown or whose behavior is hard to predict with present

techniques as indeterministic, there is no scientific substance to such

absolute claims, especially if one takes into account the bounds im-

posed by the theory of recursive functions discussed later. So, just as in

the deterministic case, this position should be considered conjectural.

In discussing the present status of physical (in)determinism, we

shall first consider provable unknowables through reduction to incom-

pleteness theorems of recursion theory, then discuss classical determin-

istic chaos, and finally deal with the three types of quantum indeter-

minism: the occurrence of certain single events, complementarity, and

value indefiniteness. The latter quantum unknowables are not com-

monly accepted by the entire community of physicists; a minority is

still hoping for a more complete quantum theory than the present sta-

tistical theory.

10.2 Provable physical unknowables

In the past century, unknowability has been formally defined and de-

rived in terms of a precise, formal notion of unprovability (Gödel,

1931; Tarski, 1932, 1956; Turing, 1937; Rogers, Jr., 1967; Davis, 1958;

Odifreddi, 1989; Smullyan, 1992a). This is a remarkable departure

from informal suspicions and observations regarding the limitations of

our worldview. No longer is one reduced to informal, heuristic con-

templations and comparisons about what one knows and can do versus

one’s ignorance and incapability. Formal unknowability is about for-

mal proofs of unpredictability and impossibility.
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There are several pathways to formal undecidability. For con-

temporaries accustomed to computer programs (and their respective

codes), a straight route may be algorithmic. What is an algorithm? In

Turing’s (1968, 34) own words,

a man provided with paper, pencil and rubber, and subject

to strict discipline [carrying out a set of rules of procedure

written down] is in effect a universal computer.

From a purely syntactic point of view, formal systems in mathematics

can be identified with computations and vice versa. Indeed, as stated

by Gödel (1986, 369-370) in a postscript, dated from June 3, 1964:

due to A. M. Turing’s work, a precise and unquestionably

adequate definition of the general concept of formal sys-

tem can now be given, the existence of undecidable arith-

metical propositions and the non-demonstrability of the

consistency of a system in the same system can now be

proved rigorously for every consistent formal system con-

taining a certain amount of finitary number theory.

Turing’s work gives an analysis of the concept of “mechan-

ical procedure” (alias “algorithm” or “computation proce-

dure” or “finite combinatorial procedure”). This concept

is shown to be equivalent with that of a “Turing machine.”

A formal system can simply be defined to be any mechani-

cal procedure for producing formulas, called provable for-

mulas.

Almost since its discovery, attempts (Popper, 1950a,b) have been

made to translate formal incompleteness into physics, mostly by re-

duction to some provable undecidable problem of recursion theory

such as the halting problem (Wolfram, 1984; Kanter, 1990; Moore,

1990; Wolfram, 1985; Costa & Doria, 1991; da Costa & Doria, 1991;

Suppes, 1993; Svozil, 1993; Hole, 1994; Casti & Traub, 1994; Casti &

Karlquist, 1996; Barrow, 1998). Here the term reduction indicates that
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physical undecidability is linked or reduced to logical undecidability.

A typical example is the embedding of a Turing machine or any type of

computer capable of universal computation into a physical system. As

a consequence, the physical system inherits any type of unsolvability

derivable for universal computers such as the unsolvability of the halt-

ing problem: because the computer is part of the physical system, so

are its behavioral patterns [and vice versa (Bridgman, 1934; Landauer,

1986, 1991)].

Note that these logical and recursion-theoretical types of physical

unknowables are only derivable within deterministic systems that are

strong enough to express self-reference, substitution (Smullyan, 1992a,

chap. 1), and universal computation. Indeterministic systems are not

deterministic by definition, and too-weak forms of expressibility are

trivially incomplete (Brukner, 2003), as they are incapable of express-

ing universal computation or self-reference and substitution.

Gödel himself did not believe that his incompleteness theorems

had any relevance for physics, especially not for quantum mechanics.

The author was told by professor Wheeler that Gödel’s resentments

[also mentioned in Bernstein (1991, 140–141)] may have been due to

Einstein’s negative opinion about quantum theory, because Einstein

may have brainwashed Gödel into believing that all efforts in this di-

rection were in vain.

10.2.1 Intrinsic self-referential observers

Embedded (Toffoli, 1978), intrinsic observers (Svozil, 1994) cannot

leave their Cartesian prison (Descartes, 1641, Meditation 1.12) and

step outside the universe examining it from some Archimedean point

(Boskovich, 1966, sect. 11, 405–409). Thus every physical observation

is reflexive (Nagel, 1986; Sosa, 2009) and circular (Kauffman, 1987).

The self-referential and substitution capability of observers results in

very diverse, unpredictable forms of behavior and in provable un-

knowables.
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For the sake of the further analysis, suppose that there exist ob-

servers measuring objects and that observers and objects are distinct

from one another, separated by a cut. Through that cut, informa-

tion is exchanged. Symbolically, we may regard the object as an agent

contained in a black box, whose only relevant emanations are rep-

resentable by finite strings of zeroes and ones appearing on the cut,

which can be modeled by any kind of screen or display. According to

this purely syntactic point of view, a physical theory should be able

to render identical symbols like the ones appearing through the cut;

that is, a physical theory should be able to mimic or emulate the black

box to which it purports to apply. This view is often adapted in quan-

tum mechanics (Fuchs & Peres, 2000), where the question regarding

any meaning of the quantum formalism is notorious (Feynman, 1965,

129).

A sharp distinction between a physical object and an extrinsic out-

side observer is a rarely affordable abstraction. Mostly the observer is

part of the system to be observed. In such cases, the measurement pro-

cess is modeled symmetrically, and information is exchanged between

observer and object bidirectionally. This symmetrical configuration

makes a distinction between observer and object purely conventional

(Svozil, 2002a). The cut is constituted by the information exchanged.

We tend to associate with the measurement apparatus one of the two

subsystems that, in comparison, is larger, more classical, and up-linked

with some conscious observer (Wigner, 1961). The rest of the system

can then be called the measured object.

Intrinsic observers face all kinds of paradoxical self-referential situ-

ations. These have been expressed informally as puzzling amusement

and artistic perplexity, and as a formalized, scientifically valuable re-

source. The liar paradox, for instance, is already mentioned in the

Bible’s Epistle to Titus 1:12, stating that “one of Crete’s own prophets

has said it: ‘Cretans are always liars, evil brutes, lazy gluttons.’ He has

surely told the truth.” In what follows, paradoxical self-referentiality
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will be applied to argue against the solvability of the general induction

problem as well as for a pandemonium of undecidabilities related to

physical systems and their behaviors. All are based on intrinsic ob-

servers embedded in the systems they observe.

It is not totally unreasonable to speculate that the limits of intrinsic

self-expression seems to be what Gödel himself considered the gist of

his incompleteness theorems. In a reply to a letter by Burks [reprinted

in von Neumann (1966, 55); see also Feferman (1984, 554)], Gödel

states:

that a complete epistemological description of a language

A cannot be given in the same language A, because the con-

cept of truth of sentences of A cannot be defined in A. It is

this theorem which is the true reason for the existence of

undecidable propositions in the formal systems containing

arithmetic.

One of the first researchers to become interested in the applica-

tion of paradoxical self-reference to physics was the philosopher Pop-

per (1950a,b) who published two almost forgotten papers discussing,

among other issues, Russell’s paradox of Tristram Shandy (Sterne,

1767): In volume 1, chapter 14, Shandy finds that he could publish two

volumes of his life every year, covering a time span far shorter than the

time it took him to write these volumes. This de-synchronization,

Shandy concedes, will rather increase than diminish as he advances;

one may thus have serious doubts about whether he will ever complete

his autobiography. This relates to a question of whether there can be a

physical computer that can be assured of correctly processing informa-

tion faster than the universe does. Wolpert (2001, 016128-1) states that

[see also Calude et al. (1995, sect. 5)] “In a certain sense, the universe

is more powerful than any information-processing system constructed

within it could be. This result can alternatively be viewed as a restric-

tion on the computational power of the universe – the universe cannot

support the existence within it of a computer that can process infor-
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mation as fast as it can.”

10.2.2 Unpredictability

For any deterministic system strong enough to support universal com-

putation, the general forecast or prediction problem is provable un-

solvable. This proposition will be argued by reduction to the halting

problem, which is provable unsolvable. A straightforward embedding

of a universal computer into a physical system results in the fact that,

owing to the reduction to the recursive undecidability of the halting

problem, certain future events cannot be predicted and are thus prov-

able indeterministic. Here reduction again means that physical unde-

cidability is linked or reduced to logical undecidability.

A clear distinction should be made between determinism (such as

computable evolution laws) and predictability (Suppes, 1993). Deter-

minism does not exclude unpredictability in the long run. The local

(temporal), step-by-step evolution of the system can be perfectly de-

terministic and computable, whereas recursion-theoretic unknowables

correspond to global observables at unbounded time scales. Indeed,

(nontrivial) provable unpredictability requires determinism, because

formalized proofs require formal systems or algorithmic behavior.

Unpredictability in indeterministic systems is tautological and triv-

ial. At the other extreme, one should also keep in mind that there exist

rather straightforward pre-Gödelian impossibilities (Brukner, 2003) to

express certain mathematical truths in weak systems that are incapable

of representing universal computation or Peano arithmetic.

For the sake of exploring (algorithmically) what paradoxical self-

reference is like, one can consider the sketch of a proof by contradic-

tion of the unsolvability of the halting problem. The halting problem

is about whether or not a computer will eventually halt on a given

input, that is, will evolve into a state indicating the completion of a

computation task or will stop altogether. Stated differently, a solu-

tion of the halting problem will be an algorithm that decides whether
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another arbitrary algorithm on arbitrary input will finish running or

will run forever.

The scheme of the proof by contradiction is as follows: the exis-

tence of a hypothetical halting algorithm capable of solving the halting

problem will be assumed. This could, for instance, be a subprogram of

some suspicious supermacro library that takes the code of an arbitrary

program as input and outputs 1 or 0, depending on whether or not the

program halts. One may also think of it as a sort of oracle or black box

analyzing an arbitrary program in terms of its symbolic code and out-

putting one of two symbolic states, say, 1 or 0, referring to termination

or nontermination of the input program, respectively.

On the basis of this hypothetical halting algorithm one constructs

another diagonalization program as follows: on receiving some arbi-

trary input program code as input, the diagonalization program con-

sults the hypothetical halting algorithm to find out whether or not this

input program halts; on receiving the answer, it does the opposite: If the

hypothetical halting algorithm decides that the input program halts,

the diagonalization program does not halt (it may do so easily by en-

tering an infinite loop). Alternatively, if the hypothetical halting algo-

rithm decides that the input program does not halt, the diagonalization

program will halt immediately.

The diagonalization program can be forced to execute a paradoxi-

cal task by receiving its own program code as input. This is so because,

by considering the diagonalization program, the hypothetical halting

algorithm steers the diagonalization program into halting if it discov-

ers that it does not halt; conversely, the hypothetical halting algorithm

steers the diagonalization program into not halting if it discovers that

it halts.

The contradiction obtained in applying the diagonalization pro-

gram to its own code proves that this program and, in particular, the

hypothetical halting algorithm cannot exist. A slightly revised form

of the proof (using quantum diagonalizaton operators that are equiv-
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alent to a classical derangement or subfactorial) holds for quantum di-

agonalization (Svozil, 2009b), as quantum information could be in a

fifty-fifty fixed-point halting state. Procedurally, in the absence of any

fixed-point halting state, the aforemetioned task might turn into a non-

terminating alteration of oscillations between halting and nonhalting

states (Kauffman, 1987).

A universal computer can in principle be embedded into, or re-

alized by, certain physical systems designed to universally compute.

An example of such a physical system is the computer on which I

am currently typing this chapter. Assuming unbounded space [i.e.,

memory (Calude & Staiger, 2010)] and time, it follows by reduction

(Wolfram, 1984; Kanter, 1990; Moore, 1990; Wolfram, 1985; Costa &

Doria, 1991; da Costa & Doria, 1991; Suppes, 1993; Svozil, 1993; Hole,

1994; Casti & Traub, 1994; Calude et al., 1995; Casti & Karlquist, 1996;

Barrow, 1998) that there exist physical observables, in particular, fore-

casts about whether or not an embedded computer will ever halt in the

sense sketched earlier, that are provably undecidable.

10.2.3 The busy beaver function as the maximal re-

currence time

The busy beaver function (Rado, 1962; Chaitin, 1974; Dewdney, 1984;

Brady, 1988) addresses the following question: suppose one considers

all programs (on a particular computer) up to length (in terms of the

number of symbols) n. What is the largest number producible by such

a program before halting? (Note that non-halting programs, possibly

producing an infinite number, e.g., by a non-terminating loop, do not

apply.) This number may be called the busy beaver function of n. The

first values of a certain universal computer’s busy beaver function with

two states and n symbols are, for n = 2, 3, 4, 5, 7 and 8, known to be,

or estimated by (Dewdney, 1984; Brady, 1988), 4, 6, 13, greater than

103, greater than 104, and greater than 1044.

Consider a related question: what is the upper bound of running
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time – or, alternatively, recurrence time – of a program of length n

bits before terminating or, alternatively, recurring? An answer to this

question will explain just how long we have to wait for the most time-

consuming program of length n bits to halt. That, of course, is a worst-

case scenario. Many programs of length n bits will have halted long

before the maximal halting time. We mention without proof (Chaitin,

1974, 1987b) that this bound can be represented by the busy beaver

function.

Knowledge of the maximal halting time would solve the halt-

ing problem quantitatively because if the maximal halting time were

known and bounded by any computable function of the program size

of n bits, one would have to wait just a little longer than the maximal

halting time to make sure that every program of length n – also this

particular program, if it is destined for termination – has terminated.

Otherwise, the program would run forever. Hence, because of the re-

cursive unsolvability of the halting problem the maximal halting time

cannot be a computable function. Indeed, for large values of n, the

maximal halting time explodes and grows faster than any computable

function of n.

By reduction, upper bounds for the recurrence of any kind of phys-

ical behavior can be obtained; for deterministic systems representable

by n bits, the maximal recurrence time grows faster than any com-

putable number of n. This bound from below for possible behaviors

may be interpreted quite generally as a measure of the impossibility to

predict and forecast such behaviors by algorithmic means.

10.2.4 Undecidability of the induction problem

Induction, in physics, is the inference of general rules dominating and

generating physical behaviors from these behaviors alone. For any de-

terministic system strong enough to support universal computation,

the general induction problem is provable unsolvable. Induction is

thereby reduced to the unsolvability of the rule inference problem
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(Gold, 1967; Blum & Blum, 1975; Angluin & Smith, 1983; Adleman

& Blum, 1991; Li & Vitányi, 1992) of identifying a rule or law repro-

ducing the behavior of a deterministic system by observing its input-

output performance by purely algorithmic means (not by intuition).

Informally, the algorithmic idea of the proof is to take any suffi-

ciently powerful rule or method of induction and, by using it, to define

some functional behavior that is not identified by it. This amounts to

constructing an algorithm which (passively) fakes the guesser by sim-

ulating some particular function until the guesser pretends to be able

to guess the function correctly. In a second, diagonalization step, the

faking algorithm then switches to a different function to invalidate the

guesser’s guess.

One can also interpret this result in terms of the recursive unsolv-

ability of the halting problem, which in turn is related to the busy

beaver function; there is no recursive bound on the time the guesser

has to wait to make sure that the guess is correct.

10.2.5 Impossibility

Physical tasks which would result in paradoxical behavior (Hilbert,

1926) are impossible to perform. One such task is the solution of the

general halting problem, as discussed earlier. Thus omnipotence ap-

pears infeasible, at least as long as one sticks to the usual formal rules

opposing inconsistencies (Hilbert, 1926, 163).

Another such paradoxical task (requiring substitution and self-

reference) can be forced upon La Bocca della Veritá (Mouth of Truth),

located in the portico of the church of Santa Maria in Cosmedin in

Rome. It is believed that if one tells a lie with one’s hand in the mouth

of the sculpture, the hand will be bitten off; another less violent legend

has it that anyone sticking a hand in the mouth while uttering a false

statement will never be able to pull the hand back out. Rucker (1982,

178) once allegedly put in his hand in the sculpture’s mouth uttering, “I

will not be able to pull my hand back out.” The author leaves it to the
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reader to imagine La Bocca della Veritá’s confusion when confronted

with such as statement!

There is a pandemonium of conceivable physical tasks (Barrow,

1998), some quite entertaining (Smullyan, 1992b), which would result

in paradoxical behavior and are thus impossible to perform. Some of

these tasks are pre-Gödelian and merely require substitution.

For the sake of demonstrating paradoxical substitution and

the resulting impossibility, consider the following printing task

discussed by Smullyan (1992a, 2–4). Let the expressions (not),

(printable), (self-substitute), have a standard interpretation in terms

of negation, printing, and self-reference by substitution [i.e., if

X is some expression formed by the earlier three expressions and

brackets, then (self-substitute)(X ) = X (X )], respectively, and define

(not)(printable)(X ) for arbitray expressions X to be true if and only

if X cannot be printed. Likewise, (not)(printable)(self-substitute)(X )
is defined to be true if and only if (self-substitute)X cannot be

printed. Whatever the rules deriving expressions (subject to the

notion of truth defined earlier) may be, as long as the system is

consistent and produces only true propositions (and no false ones),

within this small system, the following proposition is true but

unprintable: (not)(printable)(self-substitute)[(not)(printable)(self-

substitute)]. By definition, this proposition is true if and only if

(self-substitute)[(not)(printable)(self-substitute)] cannot be printed.

As per definition, (self-substitute)[(not)(printable)(self-substitute)] is

just (not)(printable)(self-substitute)[(not)(printable)(self-substitute)],
the proposition is true if and only if it is not printable. Thus the

proposition is either true and cannot be printed, or it is printable

and thus false. The latter alternative is excluded by the assumption of

consistency. Thus one is left with the only consistent alternative that

the proposition (not)(printable)(self-substitute)[(not)(printable)(self-

substitute)] is true but unprintable. Note also that, since its negation

(printable)(self-substitute)[(not)(printable)(self-substitute)] is false,
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it is also not printable (by the consistency assumption), and hence

(printable)(self-substitute)[(not)(printable)(self-substitute)] is an exam-

ple of a proposition which is undecidable within the system – neither

it nor its negation will ever be printed in a consistent formalized

system with the notion of truth defined earlier.

10.2.6 Results in classical recursion theory with im-

plications for theoretical physics

The following theorems of recursive analysis (Aberth, 1980;

Weihrauch, 2000) have some implications for theoretical physics

(Kreisel, 1974): (1) There exist recursive monotone bounded sequences

of rational numbers whose limit is no computable number (Specker,

1949). A concrete example of such a number is Chaitin’s Omega num-

ber (Chaitin, 1987a; Calude, 2002; Calude & Dinneen, 2007), the halt-

ing probability for a computer (using prefix-free code), which can be

defined by a sequence of rational numbers with no computable rate

of convergence. (2) There exist a recursive real function which has its

maximum in the unit interval at no recursive real number (Specker,

1959). This has implications for the principle of least action. (3) There

exists a real number r such that G(r ) = 0 is recursively undecidable

for G(x) in a class of functions which involves polynomials and the

sine function (Wang, 1974). This, again, has some bearing on the

principle of least action. (4) There exist incomputable solutions of

the wave equations for computable initial values (Pour-El & Richards,

1989; Bridges, 1999). (5) On the basis of theorems of recursive analy-

sis (Scarpellini, 1963; Richardson, 1968), many questions in dynamical

systems theory are provable undecidable (Hirsch, 1985; da Costa et al.,

1993; Stewart, 1991; Calude et al., 2010).
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10.3 Deterministic chaos

The wording deterministic chaos appears to be a contradictio in adjecto,

indicating a hybrid form of chaotic behavior in deterministic systems

(Lichtenberg & Lieberman, 1983; Anishchenko et al., 2007). Opera-

tionally, it is characterized by the practical impossibility of forecasting

the future because the system is unstable (Lyapunov, 1992) and very

sensitive to tiny variations of the initial state. Because the initial state

can only be determined with finite accuracy, its evolution will soon

become totally unpredictable.

10.3.1 Instabilities in classical motion

In 1885 King Oscar II of Sweden and Norway, stimulated by Weier-

strass, Hermite, and Mittag-Leffler, offered a prize to anybody con-

tributing toward the solution of the so-called n-body problem (Weier-

strass et al., 1885, 2):

Given a system of arbitrarily many mass points that attract

each according to Newton’s law, try to find, under the as-

sumption that no two points ever collide, a representation

of the coordinates of each point as a series in a variable that

is some known function of time and for all of whose values

the series converges uniformly.

The prize-winning work was expected to render systematic tech-

niques toward a solution to stable motion such that systems whose

states start out close together will stay close together forever (Diacu

& Holmes, 1996, 69). To everyone’s surprise, the exciting course of

events (Peterson, 1993; Diacu, 1996; Diacu & Holmes, 1996) resulted

in Poincaré’s prize-winning centennial revised contribution (Poincaré,

1890), which predicted unexpected and irreducible instabilities in the

mechanical motion of bodies. Poincaré was led to the conclusion that

sometimes small variations in the initial state could lead to huge varia-
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tions in the evolution of a physical system at later times. In Poincaré’s

own words (Poincaré, 1914, chapt. 4, sect. 2, 56–57):

If we would know the laws of nature and the state of the

Universe precisely for a certain time, we would be able

to predict with certainty the state of the Universe for any

later time. But . . . it can be the case that small differences in

the initial values produce great differences in the later phe-

nomena; a small error in the former may result in a large

error in the latter. The prediction becomes impossible and

we have a “random phenomenon.”

Note that Poincaré adheres to a Laplacian-type determinism but

recognizes the possibility that systems whose states start out close to-

gether will stay close together for a while (Diacu & Holmes, 1996, 69)

and then diverge into totally different behaviors. Today such behaviors

are subsumed under the name deterministic chaos. In chaotic systems,

it is practically impossible to specify the initial value precise enough to

allow long-term predictions.

Already in 1873, Maxwell mentioned (Campbell & Garnett, 1882,

211-212)

When an infinitely small variation in the present state may

bring about a finite difference in the state of the system in a

finite time, the condition of the system is said to be unsta-

ble. It is manifest that the existence of unstable conditions

renders impossible the prediction of future events, if our

knowledge of the present state is only approximate, and

not accurate.

Maxwell also discussed unstable states of high potential energy whose

spontaneous (Frank, 1932) decay or change (Campbell & Garnett,

1882, 212) “requires an expenditure of work, which in certain cases

may be infinitesimally small, and in general bears no definite propor-

tion to the energy developed in consequence thereof.”
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Today, after more than a century of research into unstable chaotic

motion, symbolic dynamics identified the Poincaré map near a homo-

cyclic orbit, the horseshoe map (Smale, 1967), and the shift map as equiv-

alent origins of classical deterministic chaotic motion, which is charac-

terized by a computable evolution law and the sensitivity and instability

with respect to variations of the initial value (Shaw, 1981; Lichtenberg

& Lieberman, 1983; Anishchenko et al., 2007).

This scenario can be demonstrated by considering the shift

map σ as it pushes up dormant information residing in the

successive bits of the initial state represented by the sequence

s = 0.(bit 1)(bit 2)(bit 3) · · · , thereby truncating the bits before

the comma; that is, σ(s) = 0.(bit 2)(bit 3)(bit 4) · · · , σ(σ(s)) =
0.(bit 3)(bit 4)(bit 5) · · · , and so on. Suppose a measurement device

operates with a precision of, say, two bits after the comma, indi-

cated by a two bit window of measurability; thus intially all infor-

mation beyond the second bit after the comma is hidden to the ex-

perimenter. Consider two initial states s = [0.(bit 1)(bit 2)](bit 3) · · ·
and s ′ = [0.(bit 1)(bit 2)](bit 3)′ · · · , where the square brackets indi-

cate the boundaries of the window of measurability (two bits in this

case). Initially, as the representations of both states start with the same

two bits after the comma [0.(bit 1)(bit 2)], these states appear opera-

tionally identical and cannot be discriminated experimentally. Sup-

pose further that, after the second bit, when compared, the successive

bits (bit i ) and (bit i )′ in both state representations at identical posi-

tions i = 3,4, . . . are totally independent and uncorrelated. After just

two iterations of the shift map σ , s and s ′ may result in totally dif-

ferent, diverging observables σ(σ(s)) = [0.(bit 3)(bit 4)](bit 5) · · · and

σ(σ(s ′)) = [0.(bit 3)′(bit 4)′](bit 5)′ · · · .
If the initial values are defined to be elements of a continuum, then

almost all (of measure one) of them are not representable by any algo-

rithmically compressible number; in short, they are random (Martin-

Löf, 1966; Calude, 2002). Classical deterministic chaos results from
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the assumption of such a random initial value – drawn somehow [one

needs the axiom of choice (Wagon, 1986; Svozil, 1995b) for doing this]

from the continuum urn – and the unfolding of the information con-

tained therein by a recursively enumerable (computable), determinis-

tic (temporal evolution) function. Of course, if one restricts the initial

values to finite sets, or, say, to the rationals, then the behavior will be

periodic. The randomness of classical, deterministic chaos resides in

the assumption of the continuum; an assumption which might be con-

sidered a convenience (for the sake of applying the infinitesimal calcu-

lus), as it is difficult to conceive of any convincing physical operational

evidence supporting the full structure of continua. If the continuum

assumption is dropped, then what remains is Maxwell’s and Poincaré’s

observation of the unpredictability of the behavior of a deterministic

system due to instabilities and diverging evolutions from almost iden-

tical initial states (Lyapunov, 1992).

10.3.2 Rate of convergence

The connections between symbolic dynamical systems and universal

computation result in provable unknowables (da Costa et al., 1993;

Stewart, 1991). These symbolic dynamic unknowables are different in

type from the dynamical instabilities, and should be interpreted recur-

sion theoretically, as outlined in Section 10.2.2.

Let us come back to the original n-body problem. About one hun-

dred years after its formulation, as quoted earlier, the n-body problem

has been solved (Babadzanjanz, 1969, 1979; Wang, 1991; Diacu, 1996;

Wang, 2001; Babadzanjanz, 1993; Babadzanjanz & Sarkissian, 2006).

The three-body problem was already solved by Sundman (1912). The

solutions are given in terms of convergent power series.

Yet, to be practically applicable, the rate of convergence of the se-

ries must be computable and even reasonably good. One might already

expect from symbolic dynamics, in particular, from chaotic motion,

that these series solutions could converge very slowly. Even the short-
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term prediction of future behaviors may require the summation of a

huge number of terms, making these series unusable for all practical

purposes (Diacu, 1996; Rousseau, 2004).

Alas, the complications regarding convergence may be more seri-

ous. Consider a universal computer based on the n-body problem.

This can, for instance, be achieved by ballistic computation, such as the

“Billiard Ball” model of computation (Fredkin & Toffoli, 1982; Margo-

lus, 2002) that effectively embeds a universal computer into an n-body

system (Svozil, 2007). It follows by reduction that certain predictions,

say, for instance, the general halting problem, are impossible.

What are the consequences of this reduction for the convergence

of the series solutions? It can be expected that not only do the se-

ries converge very slowly, like in deterministic chaos, but that, in gen-

eral, there does not exist any computable rate of convergence for the

series solutions of particular observables. This is very similar to the

busy beaver function or to Chaitin’s Omega number (Chaitin, 1987a;

Calude, 2002), representing the halting probability of a universal com-

puter. The Omega number can be enumerated by series solutions from

quasi-algorithms computing its very first digits (Calude & Dinneen,

2007). Yet, because of the incomputable growth of the time required

to determine whether certain summation terms corresponding to halt-

ing programs possibly contribute, the series lack any computable rate

of convergence.

Though it may be possible to evaluate the state of the n bodies by

Wang’s power series solution for any finite time with a computable

rate of convergence, global observables, referring to (recursively) un-

bounded times, may be incomputable. Examples of global observables

correspond to solutions of certain decision problems such as the stabil-

ity of some solar system (we do not claim that this is provable incom-

putable), or the halting problem.

This, of course, stems from the metaphor and robustness of uni-

versal computation and the capacity of the n-bodies to implement uni-
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versality. It is no particularity or peculiarity of Wang’s power series

solution. Indeed, the troubles reside in the capacity to implement sub-

stitution, self-reference, universal computation, and Peano arithmetic

by n-body problems. Because of this capacity, there cannot exist other

formalizable methods, analytic solutions, or approximations capable

of deciding and computing certain decision problems or observables

for the n-body problem.

10.4 Quantum unknowables

In addition to provable physical unknowables by reduction to

recursion-theoretic ones, and chaotic symbolic dynamic systems, a

third group of physical unknowables resides in the quantum domain.

Although it has turned out to be a highly successful theory, quan-

tum mechanics, in particular, its interpretation and meaning, has been

controversially received within the physics community. Some of its

founding fathers, like Schrödinger and, in particular, Einstein, con-

sidered quantum mechanics to be an unsatisfactory theory: Einstein,

Podolsky and Rosen (1935; 1938) argued that there exist counterfactual

(Svozil, 2009d; Vaidman, 2007) ways to infer observables from exper-

iment that, according to quantum mechanics, cannot coexist simulta-

neously; hence quantum mechanics cannot predict what experiment

can (counterfactually) measure. Thus quantum mechanics is incom-

plete and should eventually be substituted by a more complete theory.

Others, among them Born, Bohr, and Heisenberg, claimed that un-

knowability in quantum mechanics is irreducible, is ontic, and will

remain so forever. Over the years, the latter view seems to have pre-

vailed (Fuchs & Peres, 2000; Bub, 1999), although not totally unchal-

lenged (Jammer, 1966, 1974, 1992). Already Sommerfeld warned his

students not to get into the meaning behind quantum mechanics, and

as mentioned by Clauser (2002), not long ago, scientists working in

that field had to be very careful not to become discredited as quacks.
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Richard Feynman (Feynman, 1965, 129) once mentioned the

perpetual torment that results from [the question], “But

how can it be like that?” which is a reflection of uncon-

trolled but utterly vain desire to see [quantum mechanics]

in terms of an analogy with something familiar. . . . Do

not keep saying to yourself, if you can possibly avoid it,

“But how can it be like that?” because you will get “down

the drain,” into a blind alley from which nobody has yet

escaped.

This antirationalistic postulate of irreducible indeterminism and

meaninglessness came after a period of fierce debate on the quantum

foundations, followed by decades of vain attempts to complete quan-

tum mechanics in any operationally testable way, and after the dis-

covery of proofs of the incompatibility of local, realistic, context-

independent ways to complete quantum mechanics (Clauser & Shi-

mony, 1978; Mermin, 1993).

In what follows, we shall discuss three realms of quantum unknow-

ables: (1) randomness of single events, (2) complementarity, and (3)

value indefiniteness.

10.4.1 Random individual events

In 1926, Born (1926b, 866) [see an English translation in Wheeler &

Zurek (1983, 54)] postulated that

“from the standpoint of our quantum mechanics, there is

no quantity which in any individual case causally fixes the

consequence of the collision; but also experimentally we

have so far no reason to believe that there are some in-

ner properties of the atom which condition a definite out-

come for the collision. Ought we to hope later to discover

such properties . . . and determine them in individual cases?

Or ought we to believe that the agreement of theory and
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experiment – as to the impossibility of prescribing condi-

tions? I myself am inclined to give up determinism in the

world of atoms.”

Furthermore, Born suggested that, though individual particles be-

have irreducibly indeterministic, the quantum state evolves deterministi-

cally in a strictly Laplacian causal way. Indeed, between (supposedly ir-

reversible) measurements the (unitary) quantum state evolution is even

reversible, that is, one-to-one, and amounts to a generalized (distance

preserving) rotation in complex Hilbert space. In Born’s (1926a, 804)

[see an English translation in Jammer (1989, 302)] own words,

the motion of particles conforms to the laws of probabil-

ity, but the probability itself is propagated in accordance

with the law of causality. [This means that knowledge of

a state in all points in a given time determines the distribu-

tion of the state at all later times.]

This distinction between a reversible, deterministic evolution of

the quantum state, on one hand, and the irreversible measurement,

on the other hand, has left some physicists with an uneasy feeling;

in particular, because of the possibility to erase (Peres, 1980; Scully

& Drühl, 1982; Greenberger & YaSin, 1989; Scully et al., 1991; Za-

jonc et al., 1991; Kwiat et al., 1992; Pfau et al., 1994; Chapman et al.,

1995; Herzog et al., 1995) measurements by reconstructing the quan-

tum state, accompanied by a complete loss of the information obtained

from the quantum state before the (undone) measurement – unlike

in classical reversible computation (Bennett, 1973, 1982; Leff & Rex,

1990a), which still allows copying, that is, one-to-many operations, the

quantum state evolution is strictly one-to-one. Indeed, the possibility

to undo measurements on quantum states appears to be not bound by

any fundamental principle, and limited merely by the experimenter’s

technological capacities. Stated pointedly, it would in principle be pos-

sible to undo all measurements, yet this cannot be accomplished most
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of the time (for almost all measurements) for all practical purposes Bell

(1992). But then, one could speculate, Born’s statement seems to sug-

gest that the deterministic state evolution uniformly prevails. Point-

edly stated, if, at least in principle, there is no such thing as an irre-

versible measurement, and the quantum state evolves uniformly deter-

ministically, why should there exist indeterministic individual events?

In this view, the insistence in irreversible measurements as well as in an

irreducible indeterminism associated with individual quantum events

appears to be an idealistic, subjective illusion – in fact, this kind of in-

determinism depends on measurement irreversibility and decays into

thin air if the latter is denied.

Similar arguments have been brought forth by Everett (1957) and

Schrödinger (1995). Note that it is not entirely clear [and indeed re-

mains conventional (Svozil, 2002a)] where exactly the measurement

cut (Wigner, 1961; Rössler, 1998) between the observer and the object

is located. By assuming the universal applicability of quantum me-

chanics, the object and the measurement apparatus could be uniformly

combined into a larger system whose quantum mechanical evolution

should be deterministic; otherwise quantum mechanics would not be

universally valid. Such frameworks hardly offer objective opportuni-

ties for indeterminism besides subjective ones – in the many worlds

resolution (Everett, 1957), every one of many simultaneous observers

branching off to different universes subjectively experiences the arbi-

trariness of the occurrence of events as indeterminism. (This resembles

the perception of a particular sequence of bits as compared to all pos-

sible ones.)

Alas, the deterministic evolution of the quantum state could re-

sult in the superposition of classically contradictory states. One of the

mind-boggling, perplexing and counterintuitive consequences associ-

ated with this coexistence of classical contradictions is Schrödinger’s

(1935a, 812) cat paradox implying the simultaneous coexistence of

death and life of a macroscopic object such as a mammal. Another one
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is Everett’s (1957) aforementioned many-worlds interpretation suggest-

ing that our universe perpetually branches off into zillions of consis-

tent alternatives.

Thus one is faced with a dilemma: either to accept a somehow spu-

rious nonuniformity in the evolution of the quantum state during (ir-

reversible) measurement processes – an ad hoc assumption challenged

by quantum erasure experiments – or being confronted with the coun-

terintuitive decay of quantum states into superpositions of classically

mutually exclusive states – a sort of jelly – not backed by our everday

experience as conscious beings (although often ambivalent we usually

dont reside in mental ambiguity for too long). Schrödinger (1995, 19–

20) sharply addressed the difficulties of a quantum theorist coping with

this aspect of the quantum formalism:

The idea that [the alternate measurement outcomes] be

not alternatives but all really happening simultaneously

seems lunatic to [the quantum theorist], just impossible.

He thinks that if the laws of nature took this form for, let

me say, a quarter of an hour, we should find our surround-

ings rapidly turning into a quagmire, a sort of a featureless

jelly or plasma, all contours becoming blurred, we our-

selves probably becoming jelly fish. It is strange that he

should believe this. For I understand he grants that un-

observed nature does behave this way – namely according

to the wave equation. . . . according to the quantum the-

orist, nature is prevented from rapid jellification only by

our perceiving or observing it.

If, however, an additional irreducible irreversible evolution or

some other, possibly environmental (Peres, 1980; Zurek, 2003), ef-

fect associated with measurements (and the collapse of the quantum

wave function) is postulated or somehow emerges, individual events

may occur indeterministically. The considerations might appear to be

sophistries, but they have direct consequences for the supposedly most
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advanced random number generators of our time. These devices op-

erate with beam splitters (Svozil, 1990; Rarity et al., 1994; Jennewein

et al., 2000; Stefanov et al., 2000; Wang et al., 2006; Calude et al., 2010),

which are strictly reversible (Ou et al., 1987; Greenberger et al., 1993;

Zeilinger, 1981; Svozil, 2005c) – one could demonstrate reversibility

on beam splitters by forming a Mach-Zehnder interforemeter with two

serially connected ones – or parametric down-conversions and entan-

glement (Hai-Qiang et al., 2004; Fiorentino et al., 2007; Pironio et al.,

2010).

Born did not address these questions, nor did he specify the formal

notion of indeterminism to which he was relating. So far, no math-

ematical characterization of quantum randomness has been proved

(Calude & Svozil, 2008). In the absence of any indication to the con-

trary, it is mostly implicitly assumed that quantum randomness is of

the strongest possible kind, which amounts to postulating that the

symbolic sequences associated with measurement outcomes are un-

computable or even algorithmically incompressible.

Indeed, the quantum formalism does not predict the outcome of

single events when there is a mismatch between the context in which a

state was prepared, and the context in which it is measured. Here, the

term context (Svozil, 2009d,a) denotes a maximal collection of comea-

surable observables, or, more technically, the maximal operator from

which all commuting operators can be functionally derived (Halmos,

1974, sect. 84). Ideally, a quantized system can be prepared to yield

exactly one answer in exactly one context (Zeilinger, 1999; Donath &

Svozil, 2002; Svozil, 2002b). Other outcomes associated with other

contexts occur indeterministically (Calude & Svozil, 2008).

Furthermore, the quantum formalism is incapable of predicting de-

terministically the radioactive decay of individual particles. Attempts

to find causal laws lost steam (Kragh, 1997, 2009) at the time of Born’s

suggestion of the indeterministic interpretation of individual measure-

ment outcomes, and nobody has come up with a operationally satis-
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factory deterministic prediction since then.

In the absence of other explanations, it is not too unreasonable to

pragmatically presume that these single events occur without any cau-

sation and thus at random. Presently, this appears to be the prevalent

opinion among physicists. Such random quantum coin tosses (Svozil,

1990; Rarity et al., 1994; Jennewein et al., 2000; Stefanov et al., 2000;

Hai-Qiang et al., 2004; Wang et al., 2006; Fiorentino et al., 2007; Svozil,

2009e; Pironio et al., 2010) have been used for various purposes, such

as delayed choice experiments (Weihs et al., 1998a; Jennewein et al.,

2000).

Note that randomness of this type (Calude, 2005; Calude & Din-

neen, 2005) is postulated rather than proved and thus, unless disproved,

remains conjectural. This is necessarily so, for any claim of random-

ness can only be corroborated relative to, and with respect to, a more

or less large class of laws or behaviors; it is impossible to inspect the

hypothesis against an infinity of – and even less so all – conceivable

laws. To rephrase a statement about computability (Davis, 1958, 11),

how can we ever exclude the possibility of our presented, some day

(perhaps by some extraterrestrial visitors), with a (perhaps extremely

complex) device that computes and predicts a certain type of hitherto

random physical phenomenon?

10.4.2 Complementarity

Complementarity is the impossibility of measuring two or more com-

plementary observables with arbitrary precision simultaneously. In

1933, Pauli (1958, 7) gave the first explicit definition of complementar-

ity stating that [see the partial English translation in (Jammer, 1989,

369)]

in the case of an indeterminacy of a property of a system

at a certain configuration (at a certain state of a system),

any attempt to measure the respective property (at least

partially) annihilates the influence of the previous knowl-
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edge of the system on the (possibly statistical) propositions

about possible later measurement results. . . . The impact

on the system by the measurement apparatus for momen-

tum (position) is such that within the limits of the uncer-

tainty relations the value of the knowledge of the previous

position (momentum) for the prediction of later measure-

ments of position and momentum is lost.

Einstein, Podolsky, and Rosen (1935) challenged quantum comple-

mentarity (and doubted the completeness of quantum theory) by uti-

lizing a configuration of two entangled (Schrödinger, 1935a,b, 1936)

particles. They claimed to be able to empirically infer two differ-

ent complementary contexts counterfactually simultaneously, thus cir-

cumventing quantum complementarity. Thereby, one context is mea-

sured on one side of the setup, whereas the other context is measured

on the other side of it. By the uniqueness property (Svozil, 2006a) of

certain two-particle states, knowledge of a property of one particle en-

tails the certainty that, if this property were measured on the other

particle as well, the outcome of the measurement would be a unique

function of the outcome of the measurement performed.

This makes possible the measurement of one context as well as

the simultaneous counterfactual inference of a different complementary

context. Because, one could argue, although one has actually measured

on one side a different, incompatible context compared to the context

measured on the other side, if, on both sides, the same context would

be measured, the outcomes on both sides would be uniquely correlated.

(This can indeed be verified in another experiment.) Hence, the Ein-

stein, Podolsky, and Rosen argument continues, measurement of one

context per side is sufficient, for the outcome could be counterfactu-

ally inferred on the other side. Thus, effectively two complementary

contexts are knowable. Based on this argument, Einstein, Podolsky,

and Rosen suggested that quantum mechanics must be considered in-

complete, because it cannot predict what can be measured; thus a more
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complete theory is needed.

Complementarity was first encountered in quantum mechanics,

but it is a phenomenon also observable in the classical world. To get

better intuition of complementarity, we shall consider generalized urn

models (Wright, 1990, 1978) or, equivalently (Svozil, 2005b), finite de-

terministic automata (Moore, 1956; Svozil, 1993; Schaller & Svozil,

1996; Dvurečenskij et al., 1995; Calude et al., 1997) in an unknown

initial state. Both quasi-classic examples mimic complementarity to

the extent that even quasi-quantum cryptography can be performed

with them (Svozil, 2006c) as long as value indefiniteness is not a feature

of the protocol (Bechmann-Pasquinucci & Peres, 2000; Svozil, 2010a),

that is, for instance, the Bennett and Brassard (1984) protocol (Bennett

et al., 1992) can be implemented with generalized urn models, whereas

the Ekert protocol (Ekert, 1991) cannot.

A generalized urn model is characterized by an ensemble of balls

with black background color. Printed on these balls are some color

symbols. Every ball contains just one symbol per color. Further as-

sume some filters or eyeglasses that are perfect because they totally

absorb light of all other colors but a particular one. In that way, ev-

ery color can be associated with a particular pair of eyeglasses and vice

versa.

When a spectator looks at a ball through such a particular pair of

eyeglasses, the only operationally recognizable symbol will be the one

in the particular color that is transmitted through the eyeglasses. All

other colors are absorbed, and the symbols printed on them will ap-

pear black and therefore will not be differentiable from the black back-

ground. Hence the ball will appear to carry a different message or

symbol, depending on the color with which it is viewed.

For the sake of demonstration, let us consider a generalized urn

model with four ball types, two colors, say red and green, and two

symbols, say “0” and “1,” per color, that is, ball type 1: (red 0 green 0),

ball type 2: (red 0 green 1), ball type 3: (red 1 green 0), and ball
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type 4: (red 1 green 1). The green pair of eyeglasses associated with

the green observable allows the observer to differentiate between ball

types 1 or 3 (associated with the green symbol “0”), and ball types 2

or 4 (associated with the green symbol “1”). The red pair of eyeglasses

associated with the red observable allows the observer to differentiate

between ball types 1 or 2 (associated with the green symbol “0”), and

ball types 3 or 4 (associated with the green symbol “1”). [Without go-

ing into details in general this yields sets of partitions of the set of ball

types resulting in partition logics (Svozil, 1993, chapt. 10).]

The difference between the balls and the quanta is the possibility

of viewing all the different symbols on the balls in all different colors

by taking off the eyeglasses; also, one can consecutively look at one

and the same ball with differently colored pair of eyeglasses, thereby

identifying the ball completely. Quantum mechanics does not pro-

vide us with a possibility to look across the quantum veil, as it allows

neither a global, simultaneous measurement of all complementary ob-

servables nor a measurement of one observable without disturbing the

measurement of another complimentary observable (with the excep-

tion of Einstein, Podolsky, and Rosen counterfactual measurements

discussed earlier). On the contrary, there are strong formal arguments

suggesting that the assumption of a simultaneous physical coexistence

of such complementary observables yields a complete contradiction.

These issues will be discussed next.

10.4.3 Value indefiniteness versus omniscience

Still another quantum unknowable results from the fact that no global

(in the sense of all or at least certain finite sets of complementary ob-

servables) classical truth assignment exists which is consistent with

even a finite number of local (in the sense of comeasurable) ones, that

is, no consistent classical truth table can be given by pasting together

the possible outcomes of measurements of certain complementary ob-

servables. This phenomenon is also known as value indefiniteness or,



Svozil (rev. 2011 02 28) 35

by an option to interpret this result, contextuality (see later). Here

the term local refers to a particular context (Svozil, 2009a) that, opera-

tionally, should be thought of as the collection of all comeasurable or

copreparable (Zeilinger, 1999) observables. The structure of quantum

propositions (Birkhoff & von Neumann, 1936; Kochen & Specker,

1965; Kalmbach, 1983, 1986; Pták & Pulmannová, 1991; Navara &

Rogalewicz, 1991; Svozil, 1998) can be obtained by pasting contexts

together.

As by definition, only one such context is directly measurable, ar-

guments based on more than one context must necessarily involve

counterfactuals (Svozil, 2009d; Vaidman, 2007). A counterfactual is a

would-be-observable or contrary-to-fact conditional (Chisholm, 1946)

which has not been measured but potentially could have been mea-

sured if an observer would have decided to do so; alas the observer

decided to measure a different, presumably complementary, observ-

able.

Already scholastic philosophy, for instance, Thomas Aquinas, con-

sidered similar questions such as whether God has knowledge of non-

existing things (Aquinas, 1981, part one, question 14, article 9) or

things that are not yet (Aquinas, 1981, part one, question 14, article

13); see also Specker’s (1960, 243) reference to infuturabilities. Classi-

cal omniscience, at least its naive expression that, if a proposition is

true, then an omniscient agent (such as God) knows that it is true, is

plagued by controversies and paradoxes. Even without evoking quan-

tum mechanics, there exist bounds on omniscience because of the self-

referential perception of intrinsic observers endowed with free will:

if such an observer is omniscient and has absolute predictive power,

then free will could counteract omniscience and, in particular, the ob-

server’s own predictions. Within a consistent formal framework, the

only alternative is to either abandon free will, stating that it is an ideal-

istic illusion, or accept that omniscience and absolute predictive power

is bound by paradoxical self-reference.
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The empirical sciences implement classical omniscience by assum-

ing that in principle, all observables of classical physics are comeasur-

able without any restrictions, regardless of whether they are actually

measured. No ontological distinction is made between an observable

obtained by an actual and a potential or counterfactual measurement.

[In contrast, compare Schrödinger’s (1935a, sect. 7) own epistemolog-

ical interpretation of the wave function as a catalog of expectations.]

Classically, precision and comeasurability are limited only by the tech-

nical capacities of the experimenter. The principle of empirical clas-

sical omniscience has given rise to the realistic believe that all observ-

ables exist regardless of their observation, that is, regardless and inde-

pendent of any particular measurement.

Physical (co-)existence is thereby related to the realistic assumption

[sometimes referred to as the “ontic” (Atmanspacher & Primas, 2005)

viewpoint] that (Stace, 1934) “some entities sometimes exist without

being experienced by any finite mind.” With regards to such unexpe-

rienced counterfactual entities, Stace (1934, 364, 365, 368) questions

their existence (compare also Schrödinger’s remark quoted earlier):

In front of me is a piece of paper. I assume that the realist

believes that this paper will continue to exist when it is put

away in my desk for the night, and when no finite mind is

experiencing it. . . . I will state clearly at the outset that I

cannot prove that no entities exist without being experi-

enced by minds. For all I know completely unexperienced

entities may exist, but what I shall assert is that . . . there is

absolutely no reason for asserting that these non-mental,

or physical, entities ever exist except when they are being

experienced, and the proposition that they do so exist is

utterly groundless and gratuitous, and one which ought

not to be believed. . . . As regards [a] unicorn on Mars, the

correct position, as far as logic is concerned, is obviously

that if anyone asserts that there is a unicorn there, the onus
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is on him to prove it; and that until they do prove it, we

ought not to believe that they exist.

One might criticize Stace’s idealistic position by responding that

suppose an experimenter can choose which observable among a col-

lection of different, complementary, observables is actually measured.

Regardless of this choice, a measurement of any observable that could

be measured would produce some result. This contrary-to-fact con-

ditional could be interpreted as an existing element of physical real-

ity. Furthermore, according to the argument of Einstein, Podolsky

and Rosen (1935, 777), even certain sets of complementary counterfac-

tual elements of physical reality coexist “if, without in any way dis-

turbing a system, we can predict with certainty (i.e., with probability

equal to unity) the value of [these] physical quantit[ies].” The ideal-

ist might repond that these arguments are unconvincing because they

are merely based on conterfactual inference and are thus empirically

“utterly groundless and gratuitous.”

The formal expression of classical omniscience is the Boolean alge-

bra of observable propositions (Boole, 1958), in particular the abun-

dance of two-valued states interpretable as omniscience about the sys-

tem. Thereby, any such dispersionless quasi-classical two-valued state –

associated with a truth assignment – can be defined for all observables,

regardless of whether they have been actually observed.

After the discovery of complementarity, a further indication

against quantum omniscience came from Boole’s (1862) conditions of

possible (classical) experience which are bounds for the occurrence of

(classical) events that are derivable within classical probability theory

(Pitowsky, 1989a,b, 1994; Pitowsky & Svozil, 2001) for quantum prob-

abilities and quantum expectation functions. Bell (1966) pointed out

that experiments based on counterfactually inferred observables dis-

cussed by Einstein, Podolsky and Rosen (1935) discussed earlier violate

these conditions of possible (classical) experience and thus seem to indi-

cate the impossibility of a faithful embedding (i.e., preserving the log-
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ical structure) of quantum observables into classical Boolean algebras.

Stated pointedly, under some (presumably mild) side assumptions, un-

performed experiments have no results (Peres, 1978); that is, there cannot

exist a table enumerating all actual and hypothetical context indepen-

dent (see later) experimental outcomes consistent with the observed

quantum frequencies (Weihs et al., 1998b; Svozil, 2010b). As any such

table could be interpreted as omniscience with respect to the observ-

ables in the Boole-Bell-Einstein-Podolsky-Rosen-type experiments, the

impossibility to consistently enumerate such tables (under the non-

contextual assumption) appears to be a very serious indication against

omniscience in the quantum domain.

The quantum nonlocal (i.e., the particles are spatially separated)

correlations among observables in the Boole-Bell-Einstein-Podolsky-

Rosen-type experiments are stronger than classical in the sense that ex

post facto, when the two outcomes are communicated and compared,

in the case of dichotomic observables, say “0” and “1,” for some mea-

surement parameter regions, there appear to be more equal occurrences

“00” or “11” and thus fewer unequal occurrences “01” or “10” than

could be classically accounted for; likewise, for other measurement pa-

rameter regions, there appear to be fewer equal occurrences “00” or

“11” and thus more unequal occurrences “01” or “10” than could be

classically accounted for. These conclusions can only be drawn in ret-

rospect, that is, after bringing together and comparing the outcomes.

Individual outcomes occur indeterministically and, in particular, in-

dependently of the measurement parameter regions [but not of out-

comes (Shimony, 1984)] of other distant, measurements. No faster-

than-light signaling can occur. Indeed, even stronger-than-quantum

correlations would, in this scenario, not violate relativistic causality

(Popescu & Rohrlich, 1994, 1997; Krenn & Svozil, 1998; Svozil, 2005a).

The reason that it is impossible to describe all quantum observ-

ables simultaneously by classical tables of experimental outcomes can

be understood in terms of a stronger conclusion that, for quantum
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systems whose Hilbert space is of dimension greater than two, there

does not exist any dispersionless quasi-classical, two-valued state in-

terpretable as truth assignment. This conclusion, which is known as

the Kochen-Specker theorem (Specker, 1960; Kochen & Specker, 1967;

Zierler & Schlessinger, 1965; Alda, 1980, 1981; Kamber, 1964, 1965;

Mermin, 1993; Svozil, 1998; Svozil & Tkadlec, 1996; Cabello et al.,

1996; Svozil, 2009a), has a finitistic proof by contradiction. Proofs of

the Kochen-Specker theorem amount to brain teasers in graph color-

ing resulting in the fact that, for the geometric configurations consid-

ered, there does not exist any possibility to consistently and context

independently enumerate and tabulate the values of all the observables

occurring in a Kochen-Specker-type argument (Cabello et al., 1996).

The violations of conditions of possible classical experience in

Boole-Bell-type experiments or the Kochen-Specker theorem do not

exclude realism restricted to a single context but (noncontextual) real-

istic omniscience beyond it. It may thus not be totally unreasonable to

suspect that the assumption of (pre-)determined observables outside a

single context may be unjustified (Svozil, 2004).

If one nevertheless insists in the simultaneous physical coexis-

tence of counterfactual observables, any forced tabulation (Peres, 1978;

Svozil, 2010b) of truth values for Boole-Bell-type or Kochen-Specker-

type configurations would either result in a complete contradiction or

in context dependence, also termed contextuality, that is, the outcome of

a measurement of an observable would depend on what other comea-

surable observables are measured alongside it (Bohr, 1949; Bell, 1966;

Heywood & Redhead, 1983; Redhead, 1990; Svozil, 2009a).

Indeed, the current mainstream interpretation of the Boole-Bell-

type or Kochen-Specker-type theorems is in terms of contextuality,

that is, by assuming a dependence of the outcome of a single observ-

able on what other observables are actually measured or at least what

could have been consistently known alongside it. This insistence in

the coexistence of complementary observables could be interpreted as
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an attempt to rescue classical omniscience accompanied by ontological

realism at the price of accepting contextuality. The realist Bell (1966,

451) suggested that “the result of an observation may reasonably de-

pend . . . on the complete disposition of the apparatus.” (Already Bohr

(1949) mentioned “the impossibility of any sharp separation between

the behaviour of atomic objects and the interaction with the measur-

ing instruments which serve to define the conditions under which the

phenomena appear.”)

For the sake of demonstrating contextuality (Svozil, 2010b) con-

sider a dichotomic observable (with outcomes “0” or “1”). Contextu-

ality predicts that, when measured together with some particular set of

observables, this observable yields a certain outcome, say “0,” whereas

when measured together with another, complementary, set of other

observables, the observable may yield a different outcome, say “1.”

However, statistically the quantum probability and expectation

value of this observable is noncontextual and thus independent of the

set of co-observables. Thus contextuality is a hypothetical (counter-

factual) phenomenon regarding complementary measurements on an

individual particle, making it inaccessible for direct tests. Alas, as

far as Einstein-Podolsky-Rosen-type measurements might reproduce

such contextual behavior for individual particles, quantum mechan-

ics predicts noncontextuality (Svozil, 2009c) and thus contradicts the

assumption of quantum contextuality. (Often claims of experimen-

tal evidence of quantum contextuality do not deal with its individual

particle character but deal with statistical violations of Boole-Bell-type

or Kochen-Specker-type configurations. The terms which contribute

to (in)equalities are not measured on one and the same particle; op-

erationally they even originate in very different measurement setups.)

One may argue that contextuality occurs only when absolutely neces-

sary, that is, when the set of observables allows only an insufficient

number of two-valued states for a homeomorphic embedding into

(classical) Boolean algebras; but in view of the fact that quantum non-
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contextuality for single events occurs for configurations which can be

pasted together to construct a Kochen-Specker-type scheme, any such

argument might appear ad hoc..

On the basis of the aforementioned lack of quantum omniscience,

it is possible to postulate the existence of absolute sources of indeter-

minism; if there are no (preexisting) observables, and no causal laws

yielding individual outcomes, the occurrence of any such outcome

can only be unpredictable and incomputable (Calude & Svozil, 2008).

This quantum dice approach has first been proposed (Svozil, 1990; Rar-

ity et al., 1994; Zeilinger, 1999) and realized (Jennewein et al., 2000;

Stefanov et al., 2000; Hai-Qiang et al., 2004; Wang et al., 2006) in se-

tups which utilize complementarity, yet still allow omniscience. More

recently, it was suggested (Svozil, 2009e; Pironio et al., 2010) to uti-

lize quantum systems with more than two exclusive outcomes that

are are subject to value indefiniteness (two-dimensional systems can-

not be proven to be value indefinite). The additional advantage over

devices utilizing merely complementarity is that these new type of

quantum oracles (Fiorentino et al., 2007; Paterek et al., 2010; Pironio

et al., 2010) are “quantum mechanically certified” by Boole-Bell-type,

Kochen-Specker-type, and Greenberger-Horne-Zeilinger-type (Green-

berger et al., 1990) theorems not to allow omniscience. Of course,

all these devices operate under the assumption that there are no hid-

den variables that could complete the quantum mechanical descrip-

tion of nature, especially no contextual ones, as well as no quasi-

indeterminism caused by environmental influences [such as in the

context translation principle (Svozil, 2004)]. Thus, ultimately, these

sources of quantum randomness are grounded in our belief that quan-

tum mechanics is the most complete representation of physical phe-

nomenology.
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10.5 Miracles due to gaps in causal descrip-

tion

A different issue, discussed by Frank (1932), is the possible occurrence

of miracles in the presence of gaps of physical determinism. Already

Maxwell has considered singular points (Campbell & Garnett, 1882,

212–213), “where prediction, except from absolutely perfect data, and

guided by the omniscience of contingency, becomes impossible.” One

might perceive individual events occurring outside the validity of clas-

sical and quantum physics without any apparent cause as miracles. For

if there is no cause to an event, why should such an event occur alto-

gether rather than not occur?

Although such thoughts remain highly speculative, miracles could

be the basis for an operator-directed evolution in otherwise determin-

istic physical systems. Similar models have been applied to dualis-

tic models of the mind (Popper & Eccles, 1977; Eccles, 1986, 1990).

The objection that this scenario is unnecessarily complicating an oth-

erwise monistic model should be carefully reevaluated in view of

computer-generated virtual realities (Descartes, 1641; Putnam, 1981;

Svozil, 1995a). In such algorithmic universes, there are computable

evolution laws as well as inputs from interfaces. From the intrinsic

perspective (Svozil, 1994), the inputs cannot be causally accounted for,

and hence they remain irreducibly transcendental with respect to the

otherwise algorithmic universe.

10.6 Concluding thoughts

10.6.1 Metaphysical status of (in)determinism

Hilbert’s (1902) sixth problem is about the axiomatization of physics.

Regardless of whether this goal is achievable, omniscience cannot be

gained via the formalized, syntactic route, which will remain blocked

forever by the paradoxical self-reference to which intrinsic observers
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and operational methods are bound. Even if the universe were a com-

puter (Zuse, 1970; Fredkin, 1990; Wolfram, 2002; Svozil, 2006b), we

would intrinsically experience unpredictability and complementarity.

With regard to conjectures about the (in)deterministic evolution

of physical events, the situation is unsettled and can be expected to

remain unsettled forever. The reason for this is the provable impossi-

bility to formally prove (in)determinism: it is not possible to ensure

that physical behaviors are causal and will remain so forever, nor is it

possible to exclude all causal behaviors.

The postulate of indeterministic behavior in physics or elsewhere

is impossible to prove by considering a finite operationally obtained en-

coded phenotype such as a finite sequence of (supposedly random) bits

from physical experiments alone. Furthermore, recursion theory and

algorithmic information theory (Chaitin, 1987a; Calude, 2002; Grün-

wald & Vitányi, 1987) imply that an unbounded system of axioms is

required to prove the unbounded algorithmic information content of

an unbounded symbolic sequence. There also exist irreducible com-

plexities in pure mathematics (Chaitin, 2004, 2007).

The opportunistic approach that (as historically, many ingenious

scientists have failed to come up with a causal description) indetermin-

ism will prevail appears to be anecdotal, at best, and misleading, at

worst. Likewise, the advice of authoritative researchers to avoid asking

questions related to completing a theory, or to avoid thinking about

the meaning of quantum mechanics or any kind of rational interpreta-

tion, and to avoid searching for causal laws for phenomena which are,

at the same time, postulated to occur indeterministically by the same

authorities – even wisely and benevolently posted – hardly qualify as

proof.

Any kind of lawlessness can thus be claimed only with reference to,

and relative to, certain criteria, laws, or quantitative statistical or algo-

rithmic tests. For instance, randomness could be established merely

with respect to certain tests, such as some batteries of tests of random-
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ness, for instance, diehard (Marsaglia, 1995), NIST (Rukhin et al., 2001),

TestU01 (L’Ecuyer & Simard, 2007), or algorithmic (Calude & Din-

neen, 2005; Calude et al., 2010) tests. Note, however, that even the

decimal expansion of π, the ratio between the circumference and the

diameter of an ideal circle (Bailey et al., 1997; Bailey & Borwein, 2005),

behaves reasonably random (Calude et al., 2010); π might even be a

good source of randomness for many Monte Carlo calculations.

Thus, both from a formal as well as from an operational point

of view, any rational investigation into, or claim of, absolute

(in)determinism is metaphysical and can only be proved relative to a

limited number of statistical or algorithmic tests which some special-

ists happen to choose; with very limited validity for the formal and the

natural sciences.

10.6.2 Harnessing unknowables and indeterminism

Physical indeterminism need not necessarily be perceived negatively as

the absence of causal laws but rather as a valuable resource. Indeed, in-

genious quasi-programs to compute the halting probability (Chaitin,

1987a; Calude & Dinneen, 2007; Calude & Chaitin, 2007) through

summation of series without any computable rate of convergence

could, at least in principle, and in the limit of unbounded compu-

tational resources, be interpreted as generating provable random se-

quences. However, as has already been expressed by von Neumann

(1951, 768), “anyone who considers arithmetical methods of produc-

ing random digits is, of course, in a state of sin.”

Besides recursion-theoretic undecidability, there appear to be at

least two principal sources of indeterminism and randomness in

physics: (1) one scenario is associated with instabilities of classical

physical systems and with a strong dependence of future behaviors on

the initial value, and (2) quantum indeterminism, which can be subdi-

vided into three subcategories, including random outcomes of individ-

ual events, complementarity, and value indefiniteness.
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The production of random numbers by physical generators has a

long history (The RAND Corporation, 1955). The similarities and

differences between classical and quantum randomness can be con-

ceptualized in terms of two black boxes: the first of them, called the

“Poincaré box,” containing a classical, deterministic, chaotic source of

randomness and the second, called the “Born box,” containing a quan-

tum source of randomness.

A Poincaré box could be realized by operating a classical dynam-

ical system in the shift map region. Major principles for Born boxes

utilizing beam splitters or parametric down conversion include the fol-

lowing: (1) there should be at least three mutually exclusive outcomes

to ensure value indefiniteness (Bechmann-Pasquinucci & Peres, 2000;

Calude & Svozil, 2008; Svozil, 2009e; Paterek et al., 2010; Pironio et al.,

2010); (2) the states prepared and measured should be pure and in mu-

tually [possibly interlinked (Svozil, 2009c)] unbiased bases or contexts;

and (3) events should be independent to be able to apply proper nor-

malization procedures (von Neumann, 1951; Samuelson, 1968).

Suppose an agent is being presented with both boxes without any

label on, or hint about, them; that is, the origin of indeterminism is un-

known to the agent. In a modified Turing test, an agent’s task would

be to find out which is the Born and which is the Poincaré box solely

by observing their output. In the absence of any criteria, there should

not exist any operational method or procedure capable of discriminat-

ing among these boxes. Moreover, both types of indeterminism appear

to be based on speculative assumptions: in the classical case, it is the

existence of continua and the possibility to randomly choose elements

thereof, representing the initial values; in the quantum case, it is the

irreducible indeterminism of single events.

10.6.3 Personal remarks

It is perpetually amazing, perplexing and mind-boggling how many

laws and mathematical formæ can be found to express and program
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or induce physical behavior with high precision. There definitely is

substance to the Pythagorean belief that, at least in a restricted man-

ner, nature is numbers and God computes; maybe also throwing dice

sometimes.

The apparent impossibility to explain certain phenomena by any

causal law should be perceived carefully and cautiously in a historic,

transient perspective. The author has the impression that in their at-

tempts to canonize beliefs in the irreducible randomness of (quantum)

mechanics, many physicists, philosophers, and communicators may

have prematurely thrown out a thorough rationalistic worldview with

the provably unfounded claims of total omniscience and omnipotence.

Let me sketch some very speculative attempts to undo the Gori-

dan Knot that haunts the perception of randomness in the classical and

quantum domains in recent times. (1) Gödel-Turing-Tarski-type un-

decidability will remain with us forever, at least as long one allows

substitution, self-reference, and universal computation. (2) Most clas-

sical as well quantum unknowables might be epistemic and not ontic.

(3) The classical continua might be convenient abstractions that will

have to be abandoned in favor of granular, course-graining structures

eventually. As a consequence, classical randomness originating from

deterministic chaos might turn out to be formally computable but for

all practical purposes impossible to predict. (4) Space and time might

turn out to be intrinsic constructions to represent dichotomic events

in a world dominated by one-to-one state evolution. (5) There might

only exist pure quantum states that can be associated with a unique

(measurement and preparation) context. Mixed quantum states might

turn out to be purely epistemic, that is, based on our ignorance of

the pure state we are dealing with. (6) Kochen-Specker and Boole-Bell-

type arguments should be interpreted to indicate value indefiniteness

beyond a single context. The idea that there is physical existence be-

yond a single context at a time (and, associated with it, contextuality)

might be misleading. (7) Quantum randomness originate in the pro-
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cess of context translation between different, mismatching preparation

and measurement contexts. It might thus be induced by the environ-

ment of the measurement apparatus and our technologic inability to

maintain universal coherence. (8) Dualistic operator controlled scenar-

ios might present an option that are consistent or at least in peaceful co-

existence with a certain type of determinism (leaving room for miracles

or gaps of causality). The information flow from and through the in-

terface might either be experienced as miracle, or, within the statistical

bounds, as incomputable event or input. Whether these specutations

and feelings are justified only generations to come will know.
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