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In this paper we propose a quantum random number generator (QRNG) which utilises an entangled

photon pair in a Bell singlet state, and is certified explicitly by value indefiniteness. While “true

randomness” is a mathematical impossibility, the certification by value indefiniteness ensures the

quantum random bits are incomputable in the strongest sense. This is the first QRNG setup in which

a physical principle (Kochen-Specker value indefiniteness) guarantees that no single quantum bit

produced can be classically computed (reproduced and validated), the mathematical form of bitwise

physical unpredictability.

The effects of various experimental imperfections are discussed in detail, particularly those related

to detector efficiencies, context alignment and temporal correlations between bits. The analysis is to

a large extent relevant for the construction of any QRNG based on beam-splitters. By measuring the

two entangled photons in maximally misaligned contexts and utilising the fact that two rather than

one bitstring are obtained, more efficient and robust unbiasing techniques can be applied. A robust

and efficient procedure based on XORing the bitstrings together—essentially using one as a

one-time-pad for the other—is proposed to extract random bits in the presence of experimental

imperfections, as well as a more efficient modification of the von Neumann procedure for the same

task. Some open problems are also discussed.

1. Introduction

Random numbers have been around for more than 4,000 years, but never have they been in

such demand as in our time. People use random numbers everywhere. Thereby, randomness is

understood through various “symptoms.” Here are three of the largely accepted ones:

(i) Unpredictability: It is impossible to win against a random sequence in a fair betting game.

(ii) Incompressibility: It is impossible to compress a random sequence.

(iii)Typicalness: Random sequences pass every statistical test of randomness.

Can our intuition on randomness be cast in more rigorous terms? Randomness plays an es-

sential role in probability theory, the mathematical calculus of random events. Kolmogorov ax-

iomatic probability theory assigns probabilities to sets of outcomes and shows how to calculate



A. A. Abbott, C. S. Calude and K. Svozil 2

with such probabilities; it assumes randomness, but does not distinguish between individually

random and non-random elements.

For example, under a uniform distribution, the outcome of n zeros, 000 · · ·0
︸ ︷︷ ︸

n times

, has the same

probability as any other outcome of length n, namely 2−n. A similar situation appears in quantum

mechanics: quantum randomness is postulated, not defined or deduced.

Algorithmic information theory (AIT) (Chaitin 1977), developed in the 1960s, defines and

studies individual random objects, like finite bitstrings or infinite sequences. AIT shows that

“pure randomness” or “true randomness” does not exist from a mathematical point of view. For

example, there is no infinite sequence passing all tests of randomness. Randomness cannot be

mathematically proved: one can never be sure a sequence is random, there are only forms and

degrees of randomness.

Computers produce “random numbers” generated by algorithms. Computer scientists needed

a long time to realize that randomness produced by software is far from being random. This form

of randomness—known as pseudo-randomness—mimics well the human perception of random-

ness, but its quality is rather low because computability destroys many symptoms of randomness,

e.g. unpredictability. It is not totally unreasonable to put forward that pseudo-randomness rather

reflects its creators’ subjective “understanding” and “projection” of randomness †. And although

no computer or software manufacturer claims that their products can generate truly random num-

bers, recently such formally unfounded claims have re-appeared for randomness produced with

physical experiments suggesting that “truly random numbers have been generated at last” (Haahr

2010; Merali 2010).

2. Quantum Randomness

2.1. Theoretical claims to quantum randomness

Quantum mechanics has a credible claim to be one of (if not) the best sources of randomness.

There are many quantum phenomena which can be used for random number generation: nuclear

decay radiation sources, the quantum mechanical noise in electronic circuits (known as shot

noise), or photons traveling through a semi-transparent mirror.

What is the rationale for the claim that quantum randomness is indeed a better form of ran-

domness than, say, pseudo-randomness? Besides quantum complementarity (Pauli 1958) (i.e. the

impossibility of simultaneous measurements of certain complementary observables, resulting in

a randomisation of one observable if the other observable is determined) and the randomness of

certain individual measurement outcomes (Born 1969), the Kochen-Specker Theorem (Kochen

and Specker 1967) tells us that, in a quantum mechanical system represented by a Hilbert space of

dimension greater than two, for any hidden variable theory fulfilling the predictions of quantum

mechanics the following two conditions are contradictory: value definiteness (the fact that there

can, in general, be co- or pre-existing definite values prescribable to certain sets of measurement

† Psychologists have known for a long time that people tend to distrust streaks in a series of random bits, hence they

imagine a coin flipping sequence alternates between heads and tails much too often for its own sake of “randomness.”

A simple illustration of this phenomenon, called the gambler’s fallacy, is the belief that after a coin has landed on tails

ten consecutive times there are more chances that the coin will land on heads at the next flip.
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outcomes (Calude and Svozil 2008; Svozil 2010)) and non-contextuality (the value correspond-

ing to the outcome of a measurement of an observable is independent of the other compatible

observables measured alongside it). A quantum random experiment certified by value indefinite-

ness via the Kochen-Specker Theorem (i.e., an experiment in which the Kochen-Specker theorem

guarantees value indefiniteness) generates an infinite (strongly) incomputable sequence of bits:

every Turing machine can reproduce exactly only finitely many scattered digits of such an infi-

nite sequence, i.e. the sequence is bi-immune (Calude and Svozil 2008). Such certification, as has

already previously been pointed out (Calude and Svozil 2008), is based on the assumptions that

there are no contextual hidden variables and that the uniformity and symmetry of the Kochen-

Specker construction allows us to conclude strong value indefiniteness—that all observables are,

in fact, value indefinite (except those which the state is in an eigenstate of). Actually, a stronger

statement is true: no Turing machine can be proved to reproduce exactly any digit of such an

infinite sequence, i.e. it is Solovay bi-immune (Abbott et al. 2010). Indeed, if the value of a bit

could be computed before measurement then we could assign a definite value to the observable,

a contradiction. The tricky part is that we need to look at infinite sequences to prove the incom-

putability of individual bits. It is this formal incomputability which corresponds to the physical

notion of indeterminism in quantum mechanics—the inability even in principle to predict the

outcome of certain quantum measurements—rather than the mathematically vacuous notion of

“true randomness.”

Quantum random number generators (QRNGs) based on beam splitters (Svozil 1990; Rarity

et al. 1994) have been realised by the Zeilinger group in Innsbruck and Vienna (Jennewein et al.

2000) and applied for the sake of violation of Bell’s inequality under strict Einstein locality

conditions (two space-like separated events cannot influence each other in any way) (Weihs et al.

1998).

The Gisin group in Geneva (Stefanov et al. 2000), and in particular its spin-off id Quantique,

produces and markets a commercial device called Quantis (ID Quantique SA 2010). In order to

eliminate bias, the device employs von Neumann normalisation (actually a more efficient iterated

version due to Peres (1992) is used) which requires the independence of individual events: bits

are grouped into pairs, equal pairs (00 or 11) are discarded and we replace 01 with 0 and 10 with

1 (Von Neumann 1951).

A group in Shanghai and Beijing (Wang et al. 2006) has utilised a Fresnel multiple prism

as polarising beam splitter. As a normalisation technique, previously generated experimental

sequences have been used as one time pad to “encrypt” random sequences.

QRNGs based on entangled photon pairs have been realised by a second Chinese group in Bei-

jing and Ji’nan (Hai-Qiang et al. 2004), who utilised spontaneous parametric down-conversion to

produce entangled pairs of photons. One of the photons has been used as trigger, mostly to allow

a faster data production rate by eliminating double counts. Again, von Neumann normalisation

has been applied in an attempt to eliminate bias.

A group from the Hewlett-Packard Laboratories in Palo Alto and Bristol (Fiorentino et al.

2007) has used entangled photon pairs in the Bell basis state |H1V2〉+ |V1H2〉 (note that this is

not a singlet state and attains this form only for one polarisation direction; in all the other direc-

tions the state contains also V1V2 as well as H1H2 contributions), where the outcomes H1,V1 and

H2,V2 refer to observables associated with unspecified (presumably identical for both particles)

directions. In analogy to von Neumann normalisation, the coincidence events H1V2 and V1H2



A. A. Abbott, C. S. Calude and K. Svozil 4

have been mapped into 0 and 1, respectively. Thereby, as the authors have argued, the 2-qubit

space of the photon pair is effectively restricted to a two-dimensional Hilbert subspace described

by an effective-qubit state.

A more recent rendition of a QRNG (Pironio et al. 2010), although not based on photons

and beamsplitters, utilises Boole-Bell-type setups “secured by” Boole-Bell-type inequality vi-

olations in the spirit of quantum cryptographic protocols (Ekert 1991; Bechmann-Pasquinucci

and Peres 2000). This provides some indirect “statistical verification” of value indefiniteness

(again under the assumption of strong value indefiniteness), but falls short of providing certifi-

cation of strong incomputability via value indefiniteness (Calude and Svozil 2008; Svozil 2009).

With regard to value indefiniteness, the difference between Boole-Bell-type inequalities versus

Kochen-Specker-type theorems is this: In the Boole-Bell-type case, the breach of value indefi-

niteness needs not happen at every single particle, whereas in the Kochen-Specker-type case this

must happen for every particle (Svozil 2010). Pointedly stated, the Boole-Bell-type violation is

statistical, but not necessarily on every quantum separately. Hence, because a Boole-Bell-type vi-

olation does not guarantee that every bit is certified by value indefiniteness, one could potentially

produce sequences containing infinite computable subsequences “protected” by Boole-Bell-type

violations. Further, given that such criticisms seem also to hold for the statistical verification of

value indefiniteness (Pan et al. 2000; Huang et al. 2003; Cabello 2008), it seems unlikely that

statistical tests of the measurement outcomes alone can fully certify such a QRNG.

2.2. Shortcomings of current QRNGs

It is clear that any QRNG claiming a better quality of randomness has to produce at least an in-

finite incomputable sequence of outputs, preferably a strongly incomputable one. Do the current

proposals of QRNGs generate “in principle” strongly incomputable sequences of quantum ran-

dom bits? To answer this question one has to check whether the QRNG is “protected” by value

indefiniteness, the only physical principle currently known to guarantee incomputability; in most

cases the answer is either negative or cannot be verified because of lack of information about the

mechanism of the QRNG.

In Calude et al. (2010) tests based on algorithmic information theory were used to analyse

and compare quantum and non-quantum bitstrings. Ten strings of length 232 bits each from two

quantum sources (the commercial Quantis device (ID Quantique SA 2010) and the Vienna Insti-

tute for Quantum Optics and Quantum Information group (Jennewein 2009)) and three classical

sources (Mathematica, Maple and the binary expansion of π) were analysed. No distribution

was assumed for any of the sources, yet a test based on Borel-normality was able to distinguish

between the quantum and non-quantum sources of random numbers. It is known that almost

all algorithmically random strings are Borel-normal (Calude 2002), although the converse is not

true. Indeed, the tests found the quantum sources to be less normal than the pseudo-random ones.

Is this a property of quantum randomness, or evidence of flaws in the tested QRNGs?

In Abbott and Calude (2010) the probability distribution for an ideal QRNG was discussed:

not surprisingly, such devices are seen to sample from the uniform distribution. Testing the same

strings as in Calude et al. (2010) against this expected distribution, strong evidence was found

that the QRNGs tested are not sampling from the correct distribution. Further, weaker evidence
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Table 1. p-values for the χ2 test that the bitstring is sampled from the uniform

distribution. Bold values indicate statistically significant evidence that the strings are not

sampled from the uniform distribution.

QRNG k = 1 k = 2 k = 3 k = 4 k = 5

Maple 0.79 0.15 0.83 0.47 0.97

Mathematica 0.18 0.38 0.35 0.45 0.99

π 0.38 0.27 0.05 0.62 0.21

Quantis < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

Vienna 0.12 < 10−10 < 10−10 < 10−10 < 10−10

suggests the pseudo-random sources of randomness—Mathematica and Maple—are, on the con-

trary, too normal. The results of the analysis are presented in Table 2.2.

The notable exception to these findings are the Vienna bits which, when viewed at the single-

bit level, appear unbiased. It appears that the good performance at the 1-bit level has been

achieved (perhaps through experimental feedback control) at the sacrifice of the performance at

the k ≥ 2 level, a property much harder to control without post-processing. The Quantis QRNG

uses iterated von Neumann normalisation in an attempt to unbias the output; the fact that this

is not completely successful indicates either a significant variation in bias over time, or non-

independence of successive bits (Abbott and Calude 2010).

These results highlight the need to pay extra attention in the design process to the distribution

produced by a QRNG. Normalisation techniques are an effective way to remove bias, but to have

the desired effect assumptions about independence and constancy of bias must be satisfied (Ab-

bott and Calude 2010). While experiments will never realize the ideal QRNG, one needs to be

aware of how much affect experimental imperfections have. Any credible QRNG should take

these issues into account, as well as the need of explicit certification of randomness by some

physical law, e.g. value indefiniteness.

3. The scheme under ideal conditions

In what follows, a proposal for a QRNG depicted in Fig. 1, previously put forward in Svozil

(2009), will be discussed in detail. It utilises the singlet state of two two-state particles (e.g.,

photons of linear polarisation) proportional to |H1V2〉 − |V1H2〉, which is form invariant in all

measurement directions.

A single photon light source (presumably an LED) is attenuated so more than one photons are

rarely in the beam path at the same time. These photons impinge on a source of singlet states of

photons (presumably by spontaneous parametric down-conversion in a nonlinear medium). The

two resulting entangled photons are then analysed with respect to their linear polarisation state

at some directions which are π/4 radians “apart,” symbolised by “⊕” and “⊗,” respectively.

Due to the required four-dimensional Hilbert space, this QRNG is “protected” by Bell- as well

as Kochen-Specker- and Greenberger-Horne-Zeilinger-type value indefiniteness ‡. The protocol

‡ Note that this is not the case for current QRNGs based on beam-splitters, which operate in a Hilbert space of dimension

two.
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Fig. 1. Scheme of a quantum random number generator (Svozil 2009).

Table 2. The logical exclusive or operation.

O⊕
i O⊗

i O⊕
i XOR O⊗

i

0 0 0

0 1 1

1 0 1

1 1 0

utilises all three principal types of quantum indeterminism: (i) the indeterminacy of individual

outcomes of single events as proposed by Born and Dirac; (ii) quantum complementarity (due

to the use of conjugate variables), as put forward by Heisenberg, Pauli and Bohr; and (iii) value

indefiniteness due to Bell, Kochen & Specker, and Greenberger, Horne & Zeilinger.

This, essentially, is the same experimental configuration as the one used for a measurement

of the correlation function at the angle of π/4 radians (45◦). Whereas the correlation function

averages over “a large number” of single contributions, a random sequence can be obtained by

concatenating these single pairs of outcomes via addition modulo 2.

Formally, suppose that for the ith experimental run, the two outcomes are O⊕
i ∈ {0,1} corre-

sponding to D⊕
0 or D⊕

1 , and O⊗
i ∈ {0,1} corresponding to D⊗

0 or D⊗
1 . These two outcomes O⊕

i

and O⊗
i , which themselves form two sequences of random bits, are subsequently combined by

the XOR operation, which amounts to their parity, or to the addition modulo 2 according to Ta-

ble 3 (in what follows, depending on the formal context, XOR refers to either a binary function of

two binary observables, or to the logical operation). Stated differently, one outcome is used as a

one time pad to “encrypt” the other outcome, and vice versa. As a result, one obtains a sequence

x = x1x2 . . .xn with

xi = O⊕
i +O⊗

i mod 2. (1)

For the XORd sequence to still be certifiably incomputable (via value indefiniteness), one must

prove this certification is preserved under XORing—indeed strong incomputability itself is not

necessarily preserved. By necessity any QRNG certified by value indefiniteness must operate



A Quantum Random Number Generator Certified by Value Indefiniteness 7

non-trivially in a Hilbert space of dimension n ≥ 3. To transform the n-ary (incomputable) se-

quence into a binary one, a function f : {0,1, . . . ,n−1}→ {0,1,λ} must be used (λ is the empty

string); to claim certification, the strong incomputability of the bits must still be guaranteed after

the application of f . This is a fundamental issue which has to be checked for existing QRNGs

such as that in Pironio et al. (2010); without it one cannot claim to produce truly indeterminis-

tic bits. In general incomputability itself is not preserved by f ; however by consideration of the

value indefiniteness of the source the certification can be seen to hold under XOR as well as when

discarding bits (Abbott et al. 2010).

4. “Random” errors or systematic errors

In what follows we shall discuss possible “random” (no pun) or systematic errors in experimental

realisations of this QRNG (many of these errors may appear in other types of photon-based

QRNGs.) Our aim is to draw attention to the specific nature of such errors and how they affect

the resulting bitstrings. A good QRNG must, in addition to the necessary certification (e.g. by

value indefiniteness), take into account the nature of these errors and be carefully designed (along

with any subsequent post-processing) so that the resultant distribution of bitstrings the QRNG

samples from is as close as possible to the expected uniform distribution (Abbott and Calude

2010). Both the uniformity of the source and incomputability are “independent symptoms” of

randomness, and care must be taken to obtain both properties.

4.1. Double counting

One conceivable problem is that the detectors analysing the different polarisation directions do

not respond to photons of the same pair, but to two photons belonging to different pairs. This

seems to be no drawback for the application of the XOR operation since (at least in the absence of

temporal correlations between bits) the postulates of quantum mechanics state that the individ-

ual outcomes occur independently and indeterministically (the last property is mathematically

modelled by strong incomputability (Calude and Svozil 2008; Abbott et al. 2010)). If, however,

events are not independent then more care is needed. However, correlation between events is an

undesirable property in itself, and as long as care is made, it is unlikely to be made worse by

double counting.

4.2. Non-singlet states

The state produced by the spontaneous parametric down-conversion may not be exactly a singlet.

This may give rise to a systematic bias of the combined light source-analyser setup in a very

similar way as for beam splitters.

4.3. Non-alignment of polarisation measurement angles

No experimental realisation will attain a “perfect anti-alignment” of the polarisation analysers

at angles π/4 radians apart. Only in this ideal case are the bases conjugate and the correlation

function will be exactly zero. Indeed, “tuning” the angle to obtain equi-balanced sequences of
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zeroes and ones may be a method to properly anti-align the polarisers. However, one has to keep

in mind that any such “tampering” with the raw sequence of data to achieve Borel normality (e.g.

by readjustments of the experimental setup) may introduce unwanted (temporal) correlations or

other bias (Calude et al. 2010).

Incidentally, the angle π/4 is one of the three points at angles 0, π/4 and π/2 in the interval

[0,π/2] in which the classical and quantum correlation functions coincide. For all other angles,

there is a higher ratio of different or identical pairs than could be expected classically. Thus,

ideally, the QRNG could be said to operate in the “quasi classical” regime, albeit fully certified

by quantum value indefiniteness.

Quantitatively, the expectation function of the sum of the two outcomes modulus 2 can be

defined by averaging over the sum modulo 2 of the outcomes O0
i ,O

θ
i ∈ {0,1} at angle θ “apart”

in the ith experiment, over a “large number” of experiments; i.e.,

EXOR(θ) = lim
N→∞

1

N

N

∑
i=1

(

O0
i +Oθ

i mod 2
)

.

This is related to the standard correlation function,

C(θ) = lim
N→∞

1

N

N

∑
i=1

O0
i ·Oθ

i

by

EXOR(θ) =
|C(θ)− 1|

2
,

where

O0
i ·Oθ

i =

{

1, if O0
i = Oθ

i ,

−1, if O0
i 6= Oθ

i .

A detailed calculation yields the classical linear expectation function Ecl
XOR

(θ) = 1− 2θ/π, and

the quantum expectation function EXOR(θ) = (1/2)(1+ cos2θ).

Thus, for angles “far apart” from π/4, the XOR operation actually deteriorates the two ran-

dom signals taken from the two analysers separately. The deterioration is even greater quantum

mechanically than classically, as the entangled particles are more correlated and thus “less in-

dependent.” Potentially, this could be utilised to ensure a π/4 mismatch more accurately than

possible through classical means. This will be discussed in section 5 below.

In order to avoid this negative feature while generating bits, instead of XORing outcomes of

identical partner pairs, one could XOR time-shifted outcomes; e.g., instead of the expression in

Eq. (1) one may consider

xi = O0
i +Oθ

i+ j mod 2, with j > 0. (2)

One should make j large enough so that, taking in to account double counting, there is no chance

of accidentally causing two offset but correlated outcomes to be XOR’d together. Theoretical

analysis of the effects of experimental imperfections and the XOR operation are discussed later

in the paper, and XORing shifted pairs is an efficient and effective procedure for reducing such

errors.
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Fig. 2. (Color online) The classical and quantum expectation functions and the linear quantum

approximation around π/4.

4.4. Different detector efficiencies

Differences in detector efficiencies result in a bias of the sequence. This complicating effect is

separate from non-perfect misalignment of polarisation context. Suppose that the probabilities

of detection are denoted by pH1
, pH2

, pV1
, pV2

. Since pH1
+ pV1

= pH2
+ pV2

= 1, the probability

to find pairs adding up to 0 and 1 modulo 2 are pH1
pH2

+ pV1
pV2

= 1− (pH1
+ pH2

)+ 2pH1
pH2

and pH1
pV2

+ pV1
pH2

= pH1
+ pH2

− 2pH1
pH2

, respectively (adding up to 1). If both pH1
6= pV1

and pH2
6= pV2

then the resulting XOR’d sequence is biased. The two obtained sequences could

be unbiased before or after XORing by the von Neumann method (Von Neumann 1951, p. 768),

although any temporal correlations would violate the condition of independence required by this

method. One should keep in mind, however, that the von Neumann normalisation procedure

necessarily discards many bits (more efficient methods exist (Peres 1992)). The efficiency can be

increased by utilising both strings more carefully, and such a method is discussed in Section 6.4.

4.5. Unstable detector bias

Von Neumann type normalisation procedures will only remove bias due to detector efficiencies

if the bias remains constant over time. If the bias drifts over time due to instability in the de-

tectors, the resulting normalised sequence will not be unbiased but instead will simply be less

biased (Abbott and Calude 2010). It is difficult to overcome this, as experimental instability is

inevitable. However, bounds on the bias of the normalised sequence based on reasonable experi-
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mental parameters (Abbott and Calude 2010) can be used to determine the length for which the

source samples “closely enough” from the uniform distribution.

If the bias varies independently between detectors, the XORing process should serve to reduce

the impact of varying detector efficiencies and applying von Neumann normalisation to the XOR’d

bitstring is advantageous compared working with a single bitstring from a source of varying bias.

4.6. Temporal correlations, photon clustering and “bunching”

Due to the Hanbury-Brown-Twiss effect, the photons may be temporally correlated and thus

arrive clustered or “bunched.” Temporal correlations appear also at “double-slit analogous ex-

periments” in the time domain (Lindner et al. 2005), in which the role of the slits is played by

windows in time of attosecond duration. This can, to an extent, be avoided by ensuring suc-

cessive photons are sufficiently separated, although this poses a limit on the bitrate of such a

device. However, since the case where two or more singlet pairs are in the beam path at once is

potentially of sufficient importance, this effect needs further careful consideration.

Another conceivable source of temporal correlations is due to the detector dead-time, Td ,

during which the detector is inactive after measurement (Stefanov et al. 2000). If we measure

O⊕
i = 0, the detector D⊕

0 corresponding to 0 is unable to detect another photon for a small amount

of time, significantly increasing the chance of detecting a photon at the other detector during this

time, obtaining a 1. This leads to higher than expected chances of 01 and 10 being measured.

This is problematic as such a correlation will not be removed by XORing, even with an offset of j.

However, this can be avoided by discarding any measurements within time Td from the previous

measurement.

In view of conceivable temporal correlations, it would be interesting to test the quality of the

random signal as j is varied in Eq. (2). As previously mentioned, any temporal correlations will

violate the condition of independence needed for von Neumann normalisation making it difficult

to remove any bias in the output; if the dependence can be bounded then unbiasing techniques

such as that proposed by Blum (1986) could be used instead of von Neumann’s procedure. It

seems desirable and simpler to avoid temporal correlations with carefully designed experimental

methodology as opposed to post-processing where possible.

4.7. Fair sampling

As in most optical tests of Bell’s inequalities (Clauser and Shimony 1978; Garrison and Chiao

2008), the inefficiency of photon detection requires us to make the fair sampling assump-

tion (Garg and Mermin 1987; Larsson 1998; Pearle 1970; Berry et al. 2010): the loss is indepen-

dent of the measurement settings, so the ensemble of detected systems provides a fair statistical

sample of the total ensemble. In other words, we must exclude the possibility of a “demon” in

the measuring device conspiring against us in choosing which bits to reject.

The strength of the proposed QRNG relies crucially on value indefiniteness, so without this fair

sampling assumption we would forfeit the assurance of bitwise incomputability of the generated

sequence. As an example let us consider the extreme case that the detection efficiency is less

that 50%; our supposed demon could reject all bits detected as 0 and be within the bounds

given by this efficiency, while the produced sequence would be computable. In the more general
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case for any efficiency ρ < 1 the demon could reject bits to ensure every (1/(1−ρ))’th bit is a

zero; this would introduce an infinite computable subsequence, a property violating the strong

incomputability of the output bitstring produced by our QRNG, and still be consistent with the

detection efficiency.

Note that this condition is stronger than the fair sampling assumption required in tests for

violation of Bell-type inequalities because, without this assumption, any inefficiency can lead to

a loss of randomness.

5. Better-than-classical operationalization of spatial orthogonality

As has already been pointed out, for no temporal offset and in the regime of relative spatial angles

around π/4 — i.e., at almost half orthogonal measurement directions — the classical linear

expectation function Ecl
XOR

(θ) = 1− 2θ/π, for 0 < θ < π/4 is strictly smaller, and for π/4 < θ <

π/2 is strictly greater than the quantum expectation function EXOR(θ) = (1/2)(1+ cos2θ). This

can be demonstrated by rewriting θ = π/4±∆θ, and by considering a Taylor series expansion

around π/4 for small ∆θ ≪ 1, which yields EXOR(π/4±∆θ)≈ (1/2)∓∆θ, whereas Ecl
XOR

(π/4±
∆θ) = (1/2)∓ (2/π)∆θ (see Fig. 2).

Phenomenologically this indicates less-than-classical numbers of equal pairs of outcomes “0–

0” as well as “1–1,” and more-than-classical non-equal pairs of outcomes “0–1” as well as “1–0,”

respectively, for the quantum case in the region 0 < θ < π/4; as well as the reverse behaviour in

the region π/4 < θ < π/2. This in turn results in “less zeroes” and “more ones” of the resulting

sequence obtained by XORing the pairs of outcomes in the region 0< θ< π/4, as well as in “more

zeroes” and “less ones” in the region π/4 < θ < π/2 as compared to classical non-entangled

systems (Peres 1978). Hence, with increasing aberration from misalignment ∆θ the quantum

device “drifts off” into biasedness of the output “faster” than any classical device. As a result,

Borel normality is expected to be broken more strongly and quickly quantum mechanically than

classically.

This effect could in principle be used to operationalize spatial orthogonality through the fine-

tuning of angular directions yielding Borel normality. In the resulting protocols, quantum me-

chanics outperforms any classical scheme due to the differences in the correlation functions.

6. Theoretical analysis on generated bitstrings

Here we analyse the output distribution of the proposed QRNG and the ability to extract uni-

formly distributed bits from the two generated bitstrings in the presence of experimental imper-

fections.

6.1. Probability space construction

With reference to Fig. 1 for the setup, we write the generated Bell singlet state with respect the top

(“⊕”) measurement context (this is arbitrary as the singlet is form invariant in all measurement

directions) as 1√
2
(|01〉− |10〉). The lower (“⊗”) polariser is at an angle of θ to the top one. After
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beam splitters we have the state

1√
2
[cosθ(|00〉− |11〉)− sinθ(|01〉+ |10〉)] ,

so we measure the same outcome in both contexts with probability cos2 θ and different outcomes

with probability sin2 θ.

More formally, the QRNG generates two strings simultaneously, so the probability space con-

tains pairs of strings of length n. Let e⊕x ,e
⊗
y for x,y = 0,1 be the detector efficiencies of the D⊕

x

and D⊗
y detectors respectively. For perfect detectors, i.e e⊕x = e⊗y , we would expect a pair of bits

(a,b) to be measured with probability 2−1(sin2 θ)a⊕b(cos2 θ)1−a⊕b; non-perfect detectors alter

this probability depending on the values of a,b.

Let B = {0,1}, and for x,y ∈ Bn let d(x,y) be the Hamming distance between the strings x and

y, i.e the number of positions at which x and y differ, and let #b(x) be the number of bs in x.

The probability space § of bitstrings produced by the QRNG is (Bn ×Bn,2Bn×Bn
,Pn2), where

the probability Pn2 : 2Bn×Bn → [0,1] is defined for all X ⊆ Bn ×Bn as follows:

Pn2(X) =
1

Zn
∑

(x,y)∈X

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y)(e⊕0 )
#0(x)(e⊕1 )

#1(x)(e⊗0 )
#0(y)(e⊗1 )

#1(y),

and the term

Zn = ∑
(x,y)∈Bn×Bn

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y)(e⊕0 )
#0(x)(e⊕1 )

#1(x)(e⊗0 )
#0(y)(e⊗1 )

#1(y)

=
[
(sin2 θ(e⊕0 e⊗1 + e⊕1 e⊗0 )+ cos2 θ(e⊕0 e⊗0 + e⊕1 e⊗1 )

]n

ensures normalisation.

We can check easily that this is indeed a valid probability space (i.e. that is satisfies the Kol-

mogorov axioms (Billingsley 1979)). Note that for equal detector efficiencies we have

Zn = (e⊕)n(e⊗)n ∑
(x,y)∈Bn×Bn

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y) = 2n(e⊕)n(e⊗)n,

hence the probability has the simplified form

Pn2(X) = ∑
(x,y)∈X

2−n(sin2 θ)d(x,y)(cos2 θ)n−d(x,y).

Given that the proposed QRNG produces two (potentially correlated) strings, it is worth con-

sidering the distribution of each string taken separately. Given the rotational invariance of the

singlet state this should be uniformly distributed. However, because the detector efficiencies may

§ Bn is the set of bitstrings x of length |x| = n; 2X is the set of all subsets of the set X .
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vary in each detector, this is not, in general, the case. For every bitstring x ∈ Bn we have

Pn2({x}×Bn) =
1

Zn
∑

y∈Bn

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y)(e⊕0 )
#0(x)(e⊕1 )

#1(x)(e⊗0 )
#0(y)(e⊗1 )

#1(y)

=
(e⊕0 )

#0(x)(e⊕1 )
#1(x)

Zn
∑

y∈Bn

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y)(e⊗0 )
#0(y)(e⊗1 )

#1(y)

=
1

Zn

(
e⊕0 (e

⊗
1 sin2 θ+ e⊗0 cos2 θ)

)#0(x) (
e⊕1 (e

⊗
0 sin2 θ+ e⊗1 cos2 θ)

)#1(x) . (3)

We see that each bitstring taken separately appears to come from a constantly biased source

where the probabilities that a bit is 0 or 1, p0, p1, are given by the formulae

p0 = e⊕0 (e
⊗
1 sin2 θ+ e⊗0 cos2 θ)/Z1, p1 = e⊕1 (e

⊗
0 sin2 θ+ e⊗1 cos2 θ)/Z1.

This can alternatively be viewed as the distribution obtained if we were to discard one bitstring

after measurement. Note that if either e⊗0 = e⊗1 or we have perfect misalignment (i.e. θ = π/4)

then the probabilities have the simpler formulae:

px = e⊕x /(e
⊕
0 + e⊕1 ),x ∈ {0,1}.

In this case, if we further have that e⊕0 = e⊕1 , we obtain the uniform distribution by discarding

one string after measurement.

The analogous result for the symmetrical case Pn2 (Bn ×{y}) also holds.

6.2. Independence of the QRNG probability space

If we were to discard one bitstring it is clear the other bitstring is generated independently in

a statistical sense since the probability distribution source producing it is constantly biased and

independent (Abbott and Calude 2010). However, we would like to extend our notion of inde-

pendence defined Abbott and Calude (2010) to this 2-bitstring probability space.

We say the probability space (Bn ×Bn,2Bn×Bn
,Rn2) is independent if for all 1 ≤ k ≤ n and

x1, . . . ,xk, y1, . . . ,yk ∈ B we have

Rn2(x1 . . .xkBn−k × y1 . . .ykBn−k) =Rn2(x1 . . .xk−1Bn−k+1 × y1 . . .yk−1Bn−k+1)

×Rn2(Bk−1xkBn−k ×Bk−1ykBn−k).

For all x,y ∈ B|x| and 0 ≤ k+ |x| ≤ n we have

Pn2(Bn−kxBn−k−|x|×Bn−kyBn−k−|x|) = P|x|2((x,y)).

Indeed, using the additivity of the Hamming distance and the #x functions, e.g.
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d(x1 . . .xk,y1 . . .yk) = d(x1 . . .xk−1,y1 . . .yk−1)+ d(xk,yk), we have:

Pn2(Bn−kxBn−k−|x|×Bn−kyBn−k−|x|) = ∑
a1,a2∈Bn−k

∑
b1,b2∈Bn−k−|x|

Pn2 ((a1xb1,a2yb2))

=P|x|2((x,y)) ∑
a1,a2∈Bn−k

∑
b1,b2∈Bn−k−|x|

P(n−|x|)2 ((a1b1,a2b2))

=P|x|2((x,y))P(n−|x|)2(Bn−|x|×Bn−|x|)

=P|x|2((x,y)).

As a direct consequence we deduce that the probability space Pn2 defined above is independent.

6.3. XOR application

We now consider the situation where the two output bitstrings x and y are XOR’d against each

other (effectively using one as a one-time pad for the other) to produce a single bitstring, and

we investigate the distribution of the resulting bitstring. Rather than only considering the effect

of XORing paired (and potentially correlated) bits, we also consider XORing outcomes shifted by

j > 0 bits as described in Section 4.3.

For j ≥ 0 and x,y ∈ Bn+ j define the offset-XOR function X j : Bn+ j ×Bn+ j → Bn as X j(x,y) = z

where zi = xi⊕yi+ j for i = 1, . . . ,n. For z ∈ Bn the set of pairs (x,y) which produce z when XOR’d

with offset j is

A j(z) = {(x,y) | x,y ∈ Bn+ j,X j(x,y) = z}= {(ua,b(u XOR z) | u ∈ Bn,a,b ∈ B j}.

The probability space of the output produced by the QRNG is (Bn,2Bn
,Qn, j), where Qn, j : 2Bn →

[0,1] is defined for all X ⊆ Bn as:

Qn, j(X) = ∑
z∈X

P(n+ j)2(A j(z)). (4)

We note that |A j(z)| = 2n+2 j and check this is a valid probability space. Indeed, Qn, j( /0) = 0,

is trivially true,

Qn, j(B
n) = ∑

z∈Bn

P(n+ j)2(A j(z)) = P(n+ j)2

(
⋃

z

A j(z)

)

= P(n+ j)2

(
Bn+ j ×Bn+ j

)
= 1,

because all A j(z) are disjoint and thus

|
⋃

z

A j(z)|= 2n2n+2 j = (2n+ j)2, so
⋃

z

A j(z) = Bn+ j ×Bn+ j,

and for disjoint X ,Y ⊆ Bn we have Qn, j(X ∪Y ) = Qn, j(X)+Qn, j(Y ).

We now explore the form of the XOR’d distribution Qn, j for j = 0 and j > 0.
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Let z ∈ Bn and j ≥ 0. By z[m,k] we denote the substring zm . . . zk,1 ≤ m ≤ k ≤ n. We have

Qn, j(z) =P(n+ j)2(A j(z)))

= ∑
a,b∈2 j

∑
u∈2n

P(n+ j)2((ua,b(u XOR z))

= ∑
u∈2n

P(n− j)2 ((u[ j+ 1,n],(u XOR z)[1,n− j]))

· ∑
a∈2 j

Pj2 ((a,(u XOR z)[n− j+ 1,n])) ∑
b∈2 j

Pj2 ((u[1, j],b)) .

For j = 0, we note that d(u,u XOR z) = #1(z), and thus we have:

Qn,0(z) = ∑
u∈2n

Pn2 ((u,(u XOR z)))

=
1

Zn
(sin2 θ)#1(z)(cos2 θ)#0(z) ∑

u∈Bn

(e⊕0 )
#0(u)(e⊕1 )

#1(u)(e⊗0 )
#0(u XOR z)(e⊗1 )

#1(u XOR z)

=
1

Zn

(
sin2 θ(e⊕0 e⊗1 + e⊕1 e⊗0 )

)#1(z) (
cos2 θ(e⊕0 e⊗0 + e⊕1 e⊗1 )

)#0(z) .

We recognise this as a constantly biased source where

p0 = cos2 θ(e⊕0 e⊗0 + e⊕1 e⊗1 )/Z1, p1 = sin2 θ(e⊕0 e⊗1 + e⊕1 e⊗0 )/Z1.

It is interesting to compare the form of Qn,0 to the distribution of the constantly biased source

Eq. (3) by discarding one output string—the former is more sensitive to misalignment, the latter

to differences in detection efficiencies. In the case of perfect/equal detector efficiencies (but non-

perfect misalignment), discarding one string produces uniformly distributed bitstrings, whereas

XORing does not.

We now look at the case where j > 0. For the ideal situation of θ = π/4 we have the same

result as for the j = 0 case, while if we have equal detector efficiencies then we get the uniform

distribution. We show this as follows (note that Zn+ j = 2n+ j in this case):

Qn, j(z) =2−n− j ∑
un∈B

· · · ∑
un− j∈B

(sin2 θ)un⊕zn− j⊕un− j(cos2 θ)1−un⊕zn− j⊕un− j · · ·

× ∑
u1∈B

(sin2 θ)u j+1⊕z1⊕u1(cos2 θ)1−u j+1⊕z1⊕u1

=2−n− j ∑
un∈B

· · · ∑
un− j∈B

(sin2 θ+ cos2 θ) · ∑
u1∈B

(sin2 θ+ cos2 θ)

=2−n− j ∑
un− j+1...un∈B j

1

=2−n.

However, in the more general case of non-equal detector efficiencies, the distribution is no

longer independent, although in general is much closer to the uniform distribution than the j = 0

case. (Recall that independence is a sufficient but not necessary condition for uniform distribu-

tion (Abbott and Calude 2010).) It is indeed this “closeness”—the total variation distance given

by ∆(Un,Qn, j) =
1
2 ∑x∈Bn |2−n −Qn, j(x)|—which is the important quantity (Un is the uniform

distribution on n-bit strings). However, since Qn, j for j > 0 is not independent, von Neumann
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Table 3. Empirical evidence for the quality of XORing with j > 0 compared to j = 0 and

configuration settings of θ = π/5, e⊕0 = 0.30, e⊕1 = 0.33, e⊗0 = 0.29, e⊗1 = 0.30 — this is

probably much worse (further from the ideal case) that one would expect in an

experimental setup. The (small) value of n = 10 has been used as, unfortunately, the

distribution is very costly to calculate numerically. Here bin(m) denotes the (10-bit

zero-extended) binary representation of m. For example, bin(1) = 0000000001,

bin(2) = 0000000010, etc.

x bin(174) bin(487) bin(973)

Q10,0(x) 5.90×10−4 9.70×10−4 1.64×10−4

Q10,1(x) 9.75×10−4 9.71×10−4 9.71×10−4

Q10,2(x) 9.78×10−4 9.70×10−4 9.70×10−4

U10(x) 9.77×10−4 9.77×10−4 9.77×10−4

Table 4. The variation from the uniform distribution of the distributions Q10, j, using the

same parameters as Table 6.3.

∆(Q10,0,U10) 0.770271

∆(Q10,1,U10) 0.00441399

∆(Q10,1,U10) 0.00440061

normalisation cannot be applied to guarantee the uniform distribution; indeed the dependence is

not even bounded to a fixed number of preceding bits.

6.4. Criticisms and alternative operationalizations

This given, one may ask why not simply discard one string to give the distribution in Eq. (3)

and apply von Neumann normalisation to obtain uniformly distributed bitstrings. There are two

primary answers to this question.

(i) As discussed previously the effect of drift in bias and temporal correlations will ensure this

method will not produce the uniform distribution anyway. Indeed, the distribution Qn, j for j > 0

should be more robust to those effects (Qn, j for example is less sensitive to detector bias than

that in Eq. (3)). It is extremely plausible that Qn, j gives as good results as discarding one string

in practice; it is indeed very close to the uniform distribution as can be seen from Table 6.3 and

Fig. 3. To compare properly the distributions, the following open question must be answered:

what is the bound ρ depending on e⊕x ,e
⊗
y and θ such that ∆(Un,Qn, j) ≤ ρ, and how does that

compare to that given in (Abbott and Calude 2010) for normalisation of a source with varying

bias?

Further, Qn, j produces bitstrings of length n, whereas applying von Neumann to a single string

produces a string with expected length at most n/4 bits. This is a significant increase in effi-

ciency, making the shifted XORing process extremely appealing for a high bitrate, un-normalized

QRNG. Even the j = 0 case with von Neumann applied after XORing would often be preferable
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Fig. 3. (Color online) A plot of Q10, j −2−10 for each of the 210 strings of length 10. The two cases

j = 0 (blue) and j = 1 (red) show how much closer the probabilities given by Q10,1 are to that

expected from the uniform distribution than for Q10,0. The same experimental configuration as in

Table 6.3 has been used.

to discarding one string, since it is less sensitive to detector efficiency (the hardware limit) and

more sensitive to to misalignment (which is controlled by the experimenter).

(ii) If one insists on a perfect theoretical distribution in the presence of non-ideal misalignment

and unequal detector efficiencies, or perhaps the Qn, j distribution is not sufficient for particular

requirements, then one can still operationalize both strings to improve the efficiency of the QRNG

over discarding a single string by a simple modification of von Neumann’s procedure. To do

so, note that the pair of pairs (a1a2,b1b2) have the same probability as the pairs (a2a1,b2b1).

By mapping those with a1b1 < a2b2 (lexicographically) to 0, those with a1b1 > a2b2 to 1, and

discarding those with a1b1 = a2b2, one will obtain the uniform distribution as for von Neumann’s

procedure. The key advantage is that this will obtain strings of expected length up to 3n/8, while

maintaining the desired property of sampling from the uniform distribution.

The problem of determining how best to obtain the maximum amount of information from the

QRNG is largely a problem of randomness extractors (Gabizon 2010), and is a trade off between

the number of uniformly distributed bits obtained and the processing cost—a suitable extractor

needs to operate in real-time for most purposes. As we have seen, the fact that two (potentially

correlated) bitstrings are obtained allows more efficient operation than a QRNG using single-

photons. We have shown how the proposed QRNG can be operationalize in more than one way:

either by using shifted XORing of bits to sample from a distribution which is close to (equal to in

the ideal limit) the uniform distribution and efficient and robust to various errors, or by utilising

both produced bitstrings to allow a more efficient normalisation procedure giving (in absence of

the aforementioned temporal effects) the uniform distribution. Many more operationalizations

are undoubtedly possible.
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7. Summary

Every QRNG claiming to produce a better form of randomness than pseudo-randomness must

firstly be certified by some physical law implying the incomputability of the output bitstrings;

value indefiniteness is one such example. Most existing proposals of QRNGs are based on single

beam splitters and work in a dimension-two Hilbert space, so they cannot be certified by value

indefiniteness given by the Kochen-Specker theorem (which holds only in a Hilbert space of

dimension greater than 2). In this paper we have proposed a QRNG which, by utilising an entan-

gled photon singlet-state in four-dimensional Hilbert space, is certified by value indefiniteness

which implies strong incomputability, the mathematical property corresponding to physical inde-

terminism. While this is an ingredient of fundamental importance in any reasonable QRNG, we

have recognised that experimental imperfections will always prevent the QRNG from producing

exactly the theoretical uniform probability distribution, another essential symptom of random-

ness (independent of incomputability). The form and effects of these conceivable experimental

errors have been discussed, and care has been taken to make the proposed QRNG robust to these

effects.

Since this QRNG produces two bitstrings, we have proposed XORing the bitstrings produced—

using one as a one-time pad for the other—to obtain better protection against experimental im-

perfections, particularly non-ideal misalignment and unequal detector efficiencies, and to utilise

the benefit of these two strings over simply using one. Rather than XORing corresponding bits,

bits xi and yi+ j are XOR’d (for fixed j > 0) as this not only provides much better results, but also

mitigates the effects of temporal correlations between adjacent bits. Further, we have proposed an

alternative normalisation method based on von Neumann’s procedure which uses both bitstrings.

This procedure is significantly more efficient yet still guarantees uniformly distributed strings in

the presence of non-ideal misalignment and unequal detector efficiencies. We leave it as an open

question to improve upon the time-shifted XOR method and find a technique to extract bits which

are provably uniformly distributed and is more efficient than the improved von Neumann method

discussed.

Analyses of sequences generated by the proposed QRNG should be conducted, utilising the

knowledge of the expected uniform distribution, as in Calude et al. (2010). In particular, the qual-

ity of both the individual strings produced should be compared with that of the XOR’d sequence,

both with and without von Neumann normalisation applied, as well as the sequence produced by

our improved von Neumann method.

Further, in view of conceivable temporal correlations between bits, the quality of the random

bits should be tested as j is varied in Eq. (4). Since this has little effect on the bias of the resultant

string (and normalisation can subsequently remove this), it would allow investigation of the effect

and significance of these conceivable temporal correlations.

The proposed QRNG produces bits which are certified via value indefiniteness and, based on

our theoretical analysis, should be distributed more uniformly than those produced by existing

QRNGs based on beam splitters. It will be interesting to experimentally test the quality of bits

produced via this method against existing classical and quantum sources of randomness.
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