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Abstract

The indeterministic outcome of a measurement of an individual quantum is certified by the impossibil-

ity of the simultaneous, unique, definite, deterministic pre-existence of all conceivable observables from

physical conditions of that quantum alone.
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I. INTRODUCTION

One of the most astounding consequences of the assumption of the validity of the quantum

formalism in terms of Hilbert spaces [1] is the apparent impossibility of its classical interpretation.

More precisely, a classical interpretation of a quantum logical structure [2] is either identified

with a Boolean algebra, or at least with a homomorphic embedding (structurally preserving all

quantum logical relations and operations) into some Boolean algebra [3]. Quantum logics are ob-

tained by identifying (unit) vectors (associated with the one-dimensional subspaces corresponding

to the linear spans of the vectors, and with the corresponding one dimensional projectors) with

elementary yes-no propositions. The logical and, or, and not operations are identified with the

set theoretic intersection, with the linear span of two subspaces, and with forming the orthogo-

nal subspace, respectively. Suppose further that orthogonality among subspaces indicates mutual

exclusive propositions or experimental outcomes.

Then, in at least three-dimensional Hilbert (sub)spaces, there does not exist a (classical) truth

assignment on (finite sets of) elementary yes-no propositions which would

(Rule 1—“countable additivity:”): ascribe truth to exactly one observable outcome among each

set of maximal commeasurable mutually exclusive outcomes, and falsity to the others, such

that

(Rule 2—“noncontextuality:”): for “overlapping” link observables belonging to more than one

commeasurable set of observables, henceforth called context, the truth value remains the

same, independent of the particular commeasured observables [4–15].

Proofs (e.g., [5]) could be finitistic and by contradiction (i.e., via reductio ad absurdum), so

there should not be any metamathematical issues about their applicability in physics. Count-

able additivity (Rule 1) is the basis of a theorem [16–19] by Gleason which derives the Born rule

〈A〉 = Tr(ρA), where 〈A〉 and ρ stand for the expectation value of an observable A and for the

quantum state, respectively.

Yet, there are metaphysical issues related to the impossibility of a classical interpretation of

the quantum formalism; in particular the explicit and indispensible use of counterfactuals in the

argument [20]. Remarkably, this has been already emphasized in the first announcement of the

formal result [4]. Counterfactuals are “observables” which could have been measured if the ex-

perimenter would have chosen a different, i.e., complementary, measurement setup, but actually
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chose another (complementary) one. Hence, from the point of view of the quantum formalism, any

proof of the impossibility of a classical interpretation of quantum mechanics uses complementary

observables, which cannot possibly be simultaneously measured. Pointedly stated, from a strictly

operational point of view, due to quantum complementarity [21, p. 7], the entities occurring in the

proofs cannot physically coexist.

So, it may not be totally unjustified to ask why one should bother about nonoperational quan-

tities and their consequences at all? There may be two affirmative apologies for the use of coun-

terfactuals: First, although these observables could not be measured simultaneously, they are per-

fectly reasonable physical observables if the experimenter chooses to measure them. Secondly,

through a measurement setup involving two correlated particles, two complementary observables

can be measured counterfactually [22] on two space-like separated [23] but entangled [24–26]

particles. Because of constraints on the uniqueness of the arguments, this “indirect measurement”

cannot be extended to more than two counterfactual observables [27].

Quantum “value (in)definiteness,” sometimes also termed “counterfactual (in)definiteness” [28],

refers to the (im)possibility of the simultaneous existence of definite outcomes of conceivable

measurements under certain assumptions [e.g. noncontextuality; see Rule 2 above] — that is,

unperformed measurements can(not) have definite results [29]. “(In)determinacy” often (but not

always) refers to the absence (presence) of causal laws — in the sense of the principle of suffi-

cient reason stating that every phenomenon has its explanation and cause — governing a physical

behavior. Thus “value (in)definiteness” relates to a static property, whereas “(in)determinacy” is

often used for temporal evolutions. Sometimes, quantum value indefiniteness is considered as one

of the expressions of quantum indeterminacy; another expression of quantum indeterminacy is, for

instance, associated with the (radioactive) decay of some excited states [30, 31].

In what follows we shall review some explicit physical consequences of the impossibility to in-

terpret the quantum formalism classically. We shall also review consequences for the construction

of quantum mechanical devices capable of generating particular indeterministic outcomes [32–41],

which have been already discussed in an article [42] by Calude and the author.

Any particular maximal set of (mutually exclusive) observables will be called context [43]. It

constitutes a “maximal collection of co-measurable observables,” or, stated differently, a “clas-

sical mini-universe” located within the continuity of complementary quantum propositions. The

spectral theorem suggests that a context can be formalized by a single “maximal” self-adjoint

operator, such that there exist “maximal” sets of mutually compatible, co-measurable, mutually
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exclusive orthogonal projectors which appear in its spectral decomposition (e.g., [1, Sec. II.10, p.

90, English translation p. 173], [5, § 2], [44, pp. 227,228], and [45, § 84]).

II. CONTEXTUAL INTERPRETATION

In a “desperate” attempt to save realism [46], Bell [47–50] proposed to abandon the noncon-

textuality assumption Rule 2 that the truth or falsity of an individual outcome of a measurement

of some observable is independent of what other (mutually exclusive) observables are measured

“alongside” of it. In Bell’s own words [48, Sec. 5], the “danger” in the implicit assumption is

this[51]:

“It was tacitly assumed that measurement of an observable must yield the same value

independently of what other measurements may be made simultaneously. . . . The

result of an observation may reasonably depend not only on the state of the system . . .

but also on the complete disposition of the apparatus.”

This “contextual interpretation” of quantum mechanics will be henceforth called contextuality.

Notice that contextuality does not suggest that any statistical property is context dependent;

this would be ruled out by the Born rule, which is context independent. Instead, the contextual

interpretation claims that the individual outcome — Bell’s “result of an observation” — depends

on the context. This is somewhat similar to the parameter independence but outcome dependence

of correlated quantum events [52].

The exact formalization or causes of this type of “contextual outcome dependence” remains

an open question. Individual quantum events are generally conventionalized to happen acausally

and indeterministically [53, 54]; according to the prevalent quantum canon [55], “. . . for the in-

dividual event in quantum physics, not only do we not know the cause, there is no cause.” In this

belief system, indeterminism can be trivially certified by the convention of the “random outcome”

of individual quantum events, a view which is further “backed” by our inability to “come up”

with a causal model, and by the statistical analysis [56] of the assumption of stochasticity and

randomness of strings generated via the context mismatch between preparation and measurement.

Nevertheless, one should always keep in mind that this kind of indeterminism may be epistemic

and not ontic. Furthermore, due to the ambiguities of a formal definition, and by reduction to the

halting problem [57–62], the incomputablity, and even more so randomness, of arbitrary (finite)

sequences remains provably unprovable [63].
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A. Violation of probabilistic bounds

For the sake of getting a more intuitive understanding of quantum contextuality, a few examples

of its consequences will be discussed next. As any violations of Boole-Bell type elements of phys-

ical reality indicate the impossibility of its classical interpretation by probabilistic constraints [64–

67], every violation of Boole-Bell type inequalities can be re-interpreted as (experimental) “proof

of contextuality” [68–71]. Indeed, as expressed by [15], “Because of the lack of spacelike sep-

aration between one observer’s choice and the other observer’s outcome, the immense majority

of the experimental violations of Bell inequalities does not prove quantum nonlocality, but just

quantum contextuality.” Alas, while certainly most (with the exception of, e.g., [23]) experimental

violations of Bell inequalities do not prove quantum nonlocality, these statistical violations are no

direct proof of contextuality in general. Nevertheless, they may indicate counterfactual indefinite-

ness [28].

Note that in a geometric framework [64–67, 72–75], Boole-Bell type inequalities are just the

facet inequalities of a classical probability (correlation) polytope obtained by (i) forming all prob-

abilities and joint probabilities of independent events, (ii) taking all two-valued measures (inter-

pretable as truth assignments) associated with this structure, (iii) for each of the probabilities and

joint probabilities forming a vector whose components are the (encoded truth) values (either “0”

or “1”) of the two-valued measures (hence, the dimensionality of the problem is equal to the num-

ber of entries corresponding to probabilities and joint probabilities); every such vector is a vertex

of the correlation polytope, (iv) applying the Minkoswki-Weyl representation theorem (e.g., [76,

p.29]), stating that every convex polytope has a dual (equivalent) description as the intersection

of a finite number of half-spaces. Such facets are given by linear inequalities, which are obtained

from the set of vertices by solving the (computationally hard [77]) hull problem. The inequalities

coincide with Boole’s “conditions of possible experience,” and with Bell type inequalities.

Any “proof” of contextuality based on Boole-Bell type inequalities necessarily involves the

statistical behavior of many counterfactual quantities contained in Boole-Bell type inequalities.

These quantities cannot be obtained simultaneously, but merely one after another in different ex-

perimental configuration runs involving “lots of particles.” Due to the statistical nature of the

argument and its implicit improvable assumption that contextuality — that is, the abandonment of

Rule 2 — is the only possible cause for the violations of the classical probabilistic bounds, these

“proofs” lack the sufficiency of the formal argument.
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A1{B1} + · · · · · · · · · + · · · ·

A1{B2} − · · · · · · · · · − · · · ·

A2{B1} · − · · · · + · · · − · · · ·

A2{B2} · + · · · · − · · · + · · · ·

B1{A1} · · · · − · · · · · − + · · ·

B1{A2} · · · · + · · · · · + − ·· ·

B2{A1} · · · · + · · − · · − · · · ·

B2{A2} · · · · − · · + · · + · · · ·

TABLE I. Hypothetical counterfactual contextual outcomes of an experiment capable of violating the Boole-

Bell type inequalities involving binary outcomes (denoted by “−, +”) of two observables (subscripts “1, 2”)

on two particles (denoted by “A, B”). The expression “X{Y}” stands for “observable X measured alongside

observable Y.” Time progresses from left to right; rows contain the individual conceivable, potential mea-

surement values of the eight observables A1{B1}, A1{B2}, A2{B1}, A2{B2}, B1{A1}, B1{A2}, B2{A1},

and B2{A2} which “simultaneously co-exist.” Dots indicate any value in {−,+}.

B. Tables of counterfactual “outcomes”

Previously, tables of hypothetical and counterfactual experimental outcomes have been used to

argue against the noncontextual classical interpretation of the quantum probabilities [28, 29, 78].

In what follows tables of contextual outcomes violating Rule 2 will be enumerated which could

be compatible with quantum probabilities. These tables may serve as a demonstration of the kind

of behavior which is required by (hypothetical and counterfactual) individual events capable of

rendering the desired violations of Boole-Bell type violations of bounds on classical probabilities.

Let “X{Y}” stand for “observable X measured alongside observable (or context) Y.” Con-

sider the hypothetical counterfactual outcomes enumerated in Table I for simultaneous quantum

observables associated with the Clauser-Horne-Shimony-Holt inequality

|A1{B1}B1{A1}+A1{B2}B2{A1}+A2{B1}B1{A2}−A2{B2}B2{A2}| ≤ 2. (1)

They are contextual, as for some cases X{Y1} 6= X{Y2}, as indicated in the enumeration. (Note

that noncontextuality would imply the independence of X from Y; i.e., X{Y1}= X{Y2}= X.)

The difference between “truth tables” associated with configurations for the statistical argu-
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ments against value indefiniteness involving Boole-Bell type inequalities on the one hand, and for

direct proofs (e.g. by the Kochen-Specker theorem) on the other hand, is that the former tables

need not always contain contextual assignments — although it can be expected that the viola-

tions of noncontextuality should increase with increasing deviations from the classical Boole-Bell

bounds on joint probabilities[79] — whereas the latter tables require some violation(s) of non-

contextuality at every single column. For example, in the compact 18-vector configuration al-

lowing a Kochen-Specker proof introduced in [14, 80] and depicted in Fig. 1, one is forced to

violate the noncontextuality assumption Rule 2 for at least one link observable. This can be read-

ily demonstrated by considering all 36 entries per column in Table II, Whether one violation of

the noncontextuality Rule 2 is enough for consistency (i.e., the necessary extent of the violation of

contextuality) with the quantum probabilities remains unknown.

If such signatures of contextuality exist cannot be decided experimentally, as direct obser-

vations are operationally blocked by quantum complementarity. Thus this type of contextuality

remains metaphysical.

C. Indirect simultaneous tests

There exist “explosion views” of counterfactual configurations involving singlet or other cor-

related states of two three- and more state particles which, due to the counterfactual uniqueness

properties [27], are capable of indirectly testing the quantum contextuality assumption [83] by a

simultaneous measurement of two complementary contexts [22]. For the sake of explicit demon-

stration, consider Fig. 2 depicting three orthogonality (Greechie) diagrams of such configurations

of observables. Every diagram is representable in three- or four-dimensional vector space.

For the configuration depicted in Fig. 2a), contextuality predicts that there exist experimental

outcomes with A{B,C} 6= A{D,E}. As detailed quantum mechanical calculations [83] show, this

is not predicted by quantum mechanics.

For the configuration depicted in Fig. 2b), contextuality predicts that there exist experimental

outcomes with A{B,C,D} 6= A{G,H, I}, as well as A{G,H, I}= D{E,F,G}= 1, and their cyclic

permutations.

For the configuration depicted in Fig. 2c), contextuality predicts that there exist experimental

outcomes with A{B,C,D} 6= A{B,E,F}, as well as B{A,C,D} 6= B{A,E,F}. Again, this is not

predicted quantum mechanically [83].
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FIG. 1. (Color online) Greechie diagram of a finite subset of the continuum of blocks or contexts em-

beddable in four-dimensional real Hilbert space without a two-valued probability measure [14, 80] . The

proof of the Kochen-Specker theorem uses nine tightly interconnected contexts a = {A,B,C,D}, b =

{D,E,F,G}, c = {G,H, I,J}, d = {J,K,L,M}, e = {M,N,O,P}, f = {P,Q,R,A}, g = {B, I,K,R}, h =

{C,E,L,N}, i= {F,H,O,Q} consisting of the 18 projectors associated with the one dimensional subspaces

spanned by A = (0,0,1,−1), B = (1,−1,0,0), C = (1,1,−1,−1), D = (1,1,1,1), E = (1,−1,1,−1),

F = (1,0,−1,0), G = (0,1,0,−1), H = (1,0,1,0), I = (1,1,−1,1), J = (−1,1,1,1), K = (1,1,1,−1), L =

(1,0,0,1), M= (0,1,−1,0), N= (0,1,1,0), O= (0,0,0,1), P= (1,0,0,0), Q= (0,1,0,0), R= (0,0,1,1).

Greechie diagram representing atoms by points, and contexts by maximal smooth, unbroken curves. Ev-

ery observable proposition occurs in exactly two contexts. Thus, in an enumeration of the four observable

propositions of each of the nine contexts, there appears to be an even number of true propositions. Yet, as

there is an odd number of contexts, there should be an odd number (actually nine) of true propositions.

Experiment will clarify and decide the contradiction between the predictions by the contextual-

ity assumption and quantum mechanics, but it is not too unreasonable to suspect that the quantum

predictions will prevail. As a consequence, and subject to experimental falsification, any ad hoc

“ontic” contextuality assumption might turn out to be physically unfounded.

One may argue that quantum contextuality only “appears” if measurement configurations are

encountered which do not allow a set of two-valued states. The same might be said for measure-

ment configurations allowing only a “meager” set of two-valued states which cannot be used for
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A{a} 1 0 0 0 0 1 0 1 0 0 0 1 1 · · ·

A{f} 0 1 0 0 0 1 0 1 0 0 0 1 1 · · ·

B{a} 0 0 1 0 0 0 1 0 1 0 0 0 0 · · ·

B{i} · 0 · 0 0 · · 0 · · 0 0 · · · ·

C{a} 0 1 0 0 1 0 0 0 0 0 1 0 0 · · ·

C{h} · · · · · · · · · · · · · · · ·

D{a} 0 0 0 1 0 0 0 0 0 1 0 0 0 · · ·

D{b} · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · ·

P{e} · · · · · · · · · · · · · · · ·

P{f} 0 0 0 1 0 0 1 0 0 1 0 0 0 · · ·

Q{g} · · · · · · · · · · · · · · · ·

Q{f} 1 0 0 0 0 0 0 0 1 0 0 0 0 · · ·

R{i} 0 · 0 · · 0 0 · 0 0 · · 0 · · ·

R{f} 0 0 1 0 1 0 0 0 0 0 1 0 0 · · ·

TABLE II. (Color online) Hypothetical counterfactual contextual outcomes of experiments associated with

a compact proof of the Kochen-Specker theorem [14, 80] involving binary outcomes “0” or 1” of 18 observ-

ables, adding up to one within each of the nine contexts denoted by “a, . . ., i”. The expression “X{y}” stands

for “observable X measured alongside the context y.” Time progresses from left to right; rows contain the

individual conceivable, potential measurement values of the observables A{a}, . . . ,R{i} which “simultane-

ously co-exist.” Dots indicate any value in {0,1} subject to at least one violation of the noncontextuality

assumption, that is, X(y) 6= X(y′) for y 6= y′.

the construction of any homomorphic (i.e. preseving relations and operations among quantum

propositions) embedding into a classical (Boolean) algebra. Alas, configurations of observables

such as the one depicted in Fig. 2a) are just subconfigurations of proofs of the Kochen-Specker

theorem [5], in particular their Γ2 and Γ3; so it would be difficult to imagine why Fig. 2a) feature

context independence because of the experimenter takes into account only two contexts, whereas

context dependence is encountered when the experimenter has in mind, say, the entire structure of

all the 117 Kochen-Specker contexts contained in Γ3.
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FIG. 2. (Color online) Diagrammatical representation of interlinked contexts by Greechie (orthogonality)

diagrams (points stand for individual basis vectors, and entire contexts are drawn as smooth curves): a) two

tripods with a common leg; b) three interconnected fourpods (this configuration with tripods would be irrep-

resentable in three-dimensional vector space [81, 82]); b) two contexts in four dimensions interconnected

by two link observables.

III. CONTEXT TRANSLATION PRINCIPLE

In view of the inapplicability of the quantum contextuality assumption and the fact that, al-

though quantized systems can only be prepared in a certain single context[84] quantized systems

yield measurement results when measured “along” different, nonmatching context, one may spec-

ulate that the measurement apparatus must be capable of “translating” between the preparation

context and the measurement context [85]. Variation of the capabilities of the measurement appa-

ratus to translate nonmatching quantum contexts with its physical condition yields possibilities to

detect this mechanism.

In this scenario, stochasticity is introduced via the context translation process; albeit not neces-

sarily an irreversible, irreducible one, as the unitary quantum state evolution (in-between measure-

ments) is deterministic, reversible and one-to-one [86]. Nevertheless, one may further speculate

that, at least for finite experimental time series and for finite algorithmic tests, any such quasi-

deterministic form of stochasticity will result in very similar statistical behaviors as is predicted

for acausality.

Context translation might present an “epistemic” contextuality, since the “complete disposition

of the measurement apparatus” (see Bell [48, Sec. 5]) may enter in the translation function τ
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formalizing the “state reduction”

ρ−→ τD(X,Y)(ρ) ∈ SX, (2)

where ρ stands for the quantum state, SX for the spectrum of the operator X, D for the “disposition

of the apparatus,” X for the observable and Y for the context.

In general, even in the absence of some concrete “translation mechanism,” τ is subject to some

probabilistic constraints, such as Malus’ law [87]. In order to be able to account for the nonlo-

cal quantum correlation functions even at space-like separations [23] τ should also be nonlocal.

Ideally, if preparation and measurement context match, and if ρ is in some eigenstate Ei of X

with an associated eigenvalue xi, then Eq. (2) reduces to its context and apparatus independent

form Ei −→ τD(X,Y)(Ei) = τX(Ei) = xi for all Ei in the spectral sum X = ∑i xiEi. This reduction

postulate appears to be the reason for an absence of contextuality in the “explosion view” type

configurations discussed above.

For all the other cases, the measurement apparatus will introduce a stochastic element which,

in this scenario, is the reason for the quantum indeterminism of individual events. Of course,

the degree of stochasticity will depend on the context mismatch, and on the “disposition of the

apparatus.” But again, as for the ad hoc “ontic” type of contextuality discussed above, in no way

can the measurement outcome of an individual particle be completely determined by a pre-existing

element of physical reality [22] of that particle alone. In this sense, as only observables associated

with one context have a definite value and all other observables have none, one is lead to a quasi-

classical “effective value indefiniteness,” giving rise to a natural classical theory not requiring

value definiteness.

IV. SUMMARY

We have discussed the “current state of affairs” with regard to the interpretation of quantum

value indefiniteness, and the limited operationalizability of its interpretation in terms of context

dependence (contextuality) of observables. Of course, due to complementarity, quantum counter-

factuals are not directly simultaneously measurable; and thus — despite the prevalence of counter-

factuals in quantum information, communication and computation theory — anyone considering

their physical existence is, to paraphrase von Neumann’s words [88], at least empirically, “in a

state of sin.”
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In any case, the absence of classical interpretations of the quantum formalism, and in particular

the strongest expression of it — the absence of any global truth function for quantum systems of

three or more mutually exclusive outcomes — presents the possibility to render a quantum random

number generator by preparing a quantum state in a particular context and measuring it in another.

As has been pointed out already by Calude and the author [42], the resulting measurement out-

comes are “quantum certified” (i.e., true with respect to the validity of quantum mechanics) and do

not correspond to any pre-existing physical observable of the “isolated” individual system before

the measurement process. Exactly how this kind of quantum oracle for randomness operates re-

mains open. One may hold that, somehow, due to the lack of determinacy, this type of randomness

emerges “out of nowhere” and essentially is irreducible [55, 89]. One may also put forward the

idea that, at least when complementarity is involved, quantum randomness is rendered by a quasi-

classical context translation which maps an incompatible preparation context into some outcome,

thereby introducing stochasticity. In any case, for all practical purposes, the resulting oracles for

randomness, when subjected to tests [56], might be “hardly differentiable” from each other even

asymptotically.
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[7] Václav Alda, “On 0-1 measures for projectors I,” Aplikace matematiky (Applications of Mathematics)

25, 373–374 (1980).
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