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Abstract

The quantum correlations of two or more entangled particles present the possibility of stronger-

than-classical outcome coincidences. We investigate two-partite correlations of spin one, three-half

and higher quanta in a state satisfying a uniqueness property in the sense that knowledge of an

outcome of one particle observable entails the certainty that, if this observable were measured on

the other particle(s) as well, the outcome of the measurement would be a unique function of the

outcome of the measurement performed. We also investigate correlations of four spin one-half

particles.
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I. INTRODUCTION

The possibility of a peculiar and “mind-boggling” type of connectedness between two

or more spatially separated particles beyond classical correlations surprised the quantum

pioneers in their early exploration of quanta. Already Schrödinger noted that a state of

several quantized particles or quanta could be entangled (in Schrödinger’s own German

terminology “verschränkt”) in the sense that it cannot be represented as the product of states

of the isolated, individual quanta, but is rather defined by the joint or relative properties

of the quanta involved [1, 2]. Typical examples of such joint properties of entangled states

are the propositions, “when measured along two or more different directions, two spin one-

half particles have opposite spin” (defining the Bell singlet state), or “when measured along

a particular direction, three spin one-half particles have identical spin” (one of the three

defining properties of the Greenberger-Horne-Zeilinger-Mermin state).

With respect to the outcome of certain measurements on the individual particles in

an entangled state, the observation of stronger-than-classical correlations for nonlocal, i.e.,

spatially and even causally separated, quanta in “delayed choice” measurements has been

experimentally verified [3]. A typical phenomenological criterion of such correlations it the

increased of decreased frequency of the occurrence of certain coincidences of outcomes, such

as the more- or less-often-than-classically expected recordings of joint spin up and down

measurements labeled by “++,” “+−,” “−+” or “−−,” respectively.

Stated pointedly, the “magic” behind the quantum correlations as compared to classical

correlations resides in the fact that, for almost all measurement directions (despite collinear

or orthogonal ones), an observer “Alice,” when recording some outcome of a measurement,

can be sure that her partner “Bob,” although spatially and causally disconnected from her, is

either more or less likely to record a particular measurement outcome on his side. However,

because of the randomness and uncontrollability of the individual events, and because of

the no-cloning theorem, no classically useful information can be transferred from Alice to

Bob, or vice versa: The parameter independence and outcome dependence of otherwise

random events ensures that the nonlocal correlations among quanta cannot be directly used

to communicate classical information. The correlations of the joint outcomes on Alice’s

and Bob’s sides can only be verified by collecting all the different outcomes ex post facto,

recombining joint events one-by one. Nevertheless, there are hopes and visions to utilize
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nonlocal quantum correlations for a wide range of explanations and applications; for instance

in quantum information theory [4] and life sciences [5].

In what follows a few known and novel quantum correlations will be systematically enu-

merated. We shall derive the correlations between two and four two-state particles in singlet

states. We also derive the correlations of two three-, four- and general d-state particles in

a singlet state. In doing so we attempt to “sharpen” the nonclassical behavior beyond the

standard quantum correlations.

II. TWO PARTICLE CORRELATIONS

In what follows, consider two particles or quanta. On each one of the two quanta, certain

measurements (such as the spin state or polarization) of (dichotomic) observables O(a) and

O(b) along the directions a and b, respectively, are performed. The individual outcomes

are encoded or labeled by the symbols “−” and “+,” or values “-1” and “+1” are recorded

along the directions a for the first particle, and b for the second particle, respectively. A two-

particle correlation function E(a, b) is defined by averaging over the product of the outcomes

O(a)i, O(b)i ∈ {−1, 1} in the ith experiment for a total of N experiments; i.e.,

E(a, b) =
1

N

N
∑

i=1

O(a)iO(b)i. (1)

Quantum mechanically, we shall follow a standard procedure for obtaining the proba-

bilities upon which the correlation coefficients are based. We shall start from the angular

momentum operators, as for instance defined in Schiff’s “Quantum Mechanics” [6, Chap. VI,

Sec.24] in arbitrary directions, given by the spherical angular momentum co-ordinates θ and

ϕ, as defined above. Then, the projection operators corresponding to the eigenstates as-

sociated with the different eigenvalues are derived from the dyadic (tensor) product of the

normalized eigenvectors. In Hilbert space based quantum logic, every projector corresponds

to a proposition that the system is in a state corresponding to that observable. The quan-

tum probabilities associated with these eigenstates are derived from the Born rule, assuming

singlet states for the physical reasons discussed above. These probabilities contribute to the

correlation coefficients.
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A. Three-state particles

Observables

The angular momentum operator in arbitrary direction θ, ϕ is given by its spectral

decomposition

S1(θ, ϕ) = −F−(θ, ϕ) + 0 · F0(θ, ϕ) + F+(θ, ϕ), (2)

where F−, F0, F+ are the orthogonal projectors associated with the eigenstates of S1(θ, ϕ).

The generalized one-particle observable with the previous outcomes of spin state measure-

ments “coded” into the map −1 7→ λ−, 0 7→ λ0, +1 7→ λ+ can be written as R1(θ, ϕ) =

λ−F−(θ, ϕ) + λ0F0(θ, ϕ) + λ+F+(θ, ϕ).

For the sake of an operationalization of the 117 contexts contained in their proof, Kochen

and Specker [7] introduced an observable based on spin one with degenerate eigenvalues

corresponding to λ+ = λ− = 1 and λ0 = 0, or its “inverted” form λ+ = λ− = 0 and λ0 = 1.

The corresponding correlation functions will be discussed below.

Singlet state

Consider the two spin-one particle singlet state |Ψ3,2,1〉 =
1√
3
(−|00〉+ | −+〉+ |+−〉).

Its vector space representation can be explicitly enumerated by taking the direction θ =

ϕ = 0 and recalling that |+〉 ≡ (1, 0, 0), |0〉 ≡ (0, 1, 0), and |−〉 ≡ (0, 0, 1); i.e., |Ψ3,2,1〉 ≡

1√
3
(0, 0, 1, 0,−1, 0, 1, 0, 0).

Results

The general computation of the quantum correlation coefficient yields

EΨ3,2,1 λ−
λ0λ+

(θ̂, ϕ̂) = Tr
[

ρΨ3,2,1
·R11

(

θ̂, ϕ̂
)]

=

= 1
192

{

24λ20 + 40λ0 (λ− + λ+) + 22 (λ− + λ+)
2 − 32 (λ− − λ+)

2 cos θ1 cos θ2+

+2 (−2λ0 + λ− + λ+)
2 cos (2θ2)

[

(3 + cos (2 (ϕ1 − ϕ2))) cos (2θ1) + 2 sin (ϕ1 − ϕ2)
2]+

+2 (−2λ0 + λ− + λ+)
2 [cos (2 (ϕ1 − ϕ2)) + 2 cos (2θ1) sin (ϕ1 − ϕ2)

2]−

−32 (λ− − λ+)
2 cos (ϕ1 − ϕ2) sin θ1 sin θ2+

+8 (−2λ0 + λ− + λ+)
2 cos (ϕ1 − ϕ2) sin (2θ1) sin (2θ2)

}

.

(3)
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For the sake of comparison, let us relate the rather lengthy correlation coefficient in Eq. (3)

to the standard quantum mechanical correlations based on the dichotomic outcomes by

setting λ0 = 0, λ+ = +1 and λ− = −1. With these identifications,

EΨ3,2,1 −1,0,+1(θ̂, ϕ̂) = −
2

3
[cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] =

2

3
EΨ2,2,1 −1,+1(θ̂, ϕ̂). (4)

This correlation coefficient is functionally identical with the spin one-half (two outcomes)

correlation coefficients.

The correlation coefficient resulting from the Kochen-Specker observable corresponding

to λ+ = λ− = 1 and λ0 = 0 or its inverted form λ+ = λ− = 0 and λ0 = 1 is

EΨ3,2,1 +1,0,+1(θ̂, ϕ̂) = 1
24
{11 + cos[2(ϕ1 − ϕ2)] + 4 cos(ϕ1 − ϕ2) sin(2θ1) sin(2θ2)+

+2 [cos(2θ1) + cos(2θ2)] sin
2(ϕ1 − ϕ2)+

+ cos(2θ1) cos(2θ2) [cos(2(ϕ1 − ϕ2)) + 3]} ,

EΨ3,2,1 0,+1,0(θ̂, ϕ̂) = 1
3
[cos θ1 cos θ2) + cos(ϕ1 − ϕ2) sin θ1 sin θ2]

2 ,

EΨ3,2,1 +1,0,+1(
π
2
, π
2
, ϕ̂) = 1

6
{cos [2(ϕ1 − ϕ2)] + 3} ,

EΨ3,2,1 0,+1,0(
π
2
, π
2
, ϕ̂) = 1

3
cos2(ϕ1 − ϕ2),

EΨ3,2,1 +1,0,+1(θ̂, 0, 0) = 1
6
{cos [2(θ1 − θ2)] + 3} ,

EΨ3,2,1 0,+1,0(θ̂, 0, 0) = 1
3
cos2(θ1 − θ2).

(5)

By comparing the quantum correlation coefficient EΨ3,2,1 −1,0,+1(θ̂, 0, 0) ∝ − cos(θ1 − θ2)

of the spin operators in Eq. (4) with the quantum correlation coefficient of the Kochen

Specker operators EΨ3,2,1 +1,0,+1(θ̂, 0, 0) ∝ cos [2(θ1 − θ2)] of Eq. (5), one could, for higher-

than one-half angular momentum observables, envision an “enhancement” of the quantum

correlation coefficient by adding weighted correlation coefficients, generated from different

labels λi. Indeed, in the domain 0 < |θ1 − θ2| <
π
3
, the plasticity of EΨl,2,1 λ−1,λ0,λ+1

can be

used to build up “enhanced” quantum correlations via

1
2

{

EΨ3,2,1 −1,0,+1(θ̂, 0, 0) + 3
[

2EΨ3,2,1 +1,0,+1(θ̂, 0, 0)− 1
]}

= 1
2
[− cos(θ1 − θ2) + cos 2(θ1 − θ2)]

< − cos(θ1 − θ2) = EΨ2,2,1 −1,+1(θ̂, 0, 0)

(6)
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B. Four-state particles

Observables

The angular momentum operator in arbitrary direction θ, ϕ can be written in its spectral

form

S 3

2

(θ, ϕ) = −
3

2
F− 3

2

(θ, ϕ)−
1

2
F− 1

2

(θ, ϕ) +
1

2
F+ 1

2

(θ, ϕ) +
3

2
F+ 3

2

(θ, ϕ). (7)

If one is only interested in spin state measurements with the associated outcomes of spin

states in units of ~, the associated two-particle operator is given by S 3

2

(θ1, ϕ1)⊗ S 3

2

(θ2, ϕ2).

More generally, one could define a two-particle operator by

F 2
λ
−

3
2

,λ
−

1
2

,λ
+1

2

,λ
+3

2

(θ̂, ϕ̂) = Fλ
−

3
2

,λ
−

1
2

,λ
+1

2

,λ
+3

2

(θ1, ϕ1)⊗ Fλ
−

3
2

,λ
−

1
2

,λ
+1

2

,λ
+3

2

(θ2, ϕ2), (8)

where

Fλ
−

3
2

,λ
−

1
2

,λ
+1

2

,λ
+3

2

(θ, ϕ) = λ− 3

2

F− 3

2

(θ, ϕ) + λ− 1

2

F− 1

2

(θ, ϕ) + λ 1

2

F+ 1

2

(θ, ϕ) + λ 3

2

F+ 3

2

(θ, ϕ). (9)

For the sake of the physical interpretation of this operator (8), let us consider as a concrete

example a spin state measurement on two quanta: Fλ
−

3
2

(θ1, ϕ1) ⊗ Fλ
+3

2

(θ2, ϕ2) stands for

the proposition

‘The outcome of the first particle measured along θ1, ϕ1 is “λ− 3

2

” and the outcome

of the second particle measured along θ2, ϕ2 is “λ+ 3

2

” .’

Singlet state

The singlet state of two spin-3/2 observables can be found by the general methods de-

veloped in Ref. [8]. In this case, this amounts to summing all possible two-partite states

yielding zero angular momentum, multiplied with the corresponding Clebsch-Gordan co-

efficients 〈j1m1j2m2|00〉 = δj1,j2δm1,−m2

(−1)j1−m1√
2j1+1

of mutually negative single particle states

resulting in total angular momentum zero. More explicitly, for j1 = j2 = 3
2
, |ψ4,2,1〉 =

1
2

(∣

∣

3
2
,−3

2

〉

−
∣

∣−3
2
, 3
2

〉

−
∣

∣

1
2
,−1

2

〉

+
∣

∣−1
2
, 1
2

〉)

. Again, this two-partite singlet state satisfies

the uniqueness property. The four different spin states can be identified with the Carte-

sian basis of four-dimensional Hilbert space
∣

∣

3
2

〉

≡ (1, 0, 0, 0),
∣

∣

1
2

〉

≡ (0, 1, 0, 0),
∣

∣−1
2

〉

≡

(0, 0, 1, 0), and
∣

∣−3
2

〉

≡ (0, 0, 0, 1), respectively.
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Results

For the sake of comparison, let us again specify the rather lengthy correlation coefficient

in the case of general observables with arbitrary outcomes λi, i = 1, . . . , 4 to the standard

quantum mechanical correlations (4) by setting λ+ 3

2

= +3
2
, λ+ 1

2

= +1
2
, λ− 1

2

= −1
2
and

λ− 3

2

= −3
2
; i.e., by substituting the general outcomes with spin state observables in units of

~. With these identifications, the correlation coefficients can be directly calculated via S 3

2

3

2

;

i.e.,

EΨ4,2,1 − 3

2
,− 1

2
,+ 1

2
,+ 3

2

(θ̂, ϕ̂) = Tr
{

ρΨ4,2,1
·
[

S 3

2

(θ1, ϕ1)⊗ S 3

2

(θ2, ϕ2)
]}

= −5
4
[cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2]

= 8
15
EΨ2,3,1 −1,+1(θ̂, ϕ̂)

= 5EΨ2,2,1 − 1

2
,+ 1

2

(θ̂, ϕ̂) = 5
4
EΨ2,2,1 −1,+1(θ̂, ϕ̂)

. (10)

This correlation coefficient is again functionally identical with the spin one-half and spin

one (two and three outcomes) correlation coefficients.

The plasticity of the general correlation coefficient

EΨ4,2,1 λ
−

3
2

,λ
−

1
2

,λ
+1

2

,λ
+3

2

(θ̂, ϕ̂) = Tr

[

ρΨ4,2,1
· F 2

λ
−

3
2

,λ
−

1
2

,λ
+1

2

,λ
+3

2

(θ̂, ϕ̂)

]

(11)

can be demonstrated by enumerating special cases; e.g.,

EΨ4,2,1 −1,−1,+1,+1(θ, 0, 0, 0) = 1
8
[−7 cos θ − cos(3θ)] ,

EΨ4,2,1 −1,+1,+1,−1(θ, 0, 0, 0) = 1
4
[3 cos(2θ) + 1] ,

EΨ4,2,1 +1,−1,+1,−1(θ, 0, 0, 0) = 1
2
[− cos θ − cos(3θ)] .

(12)

These functions are drawn in Fig. 1, together with the spin state correlation coeffi-

cient 4
5
EΨ4,2,1 − 3

2
,− 1

2
,+ 1

2
,+ 3

2

(θ, 0, 0, 0) = − cos θ and the classical linear correlation coefficient

Ecl,2,2(θ) = 2θ/π − 1.

C. General case of two spin j particles

The general case of spin correlation values of two particles with arbitrary spin j (see

the Appendix of Ref. [9] for a group theoretic derivation) can be directly calculated in an

analogous way as before, yielding

EΨ2,2j+1,1 −j,−j+1,...,+j−1,+j(θ̂, ϕ̂) = Tr
{

ρΨ2,2j+1,1
· [Sj(θ1, ϕ1)⊗ Sj(θ2, ϕ2)]

}

= − j(1+j)
3

[cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] .
(13)

7



0 Π

4
Π

2
3 Π
4

Π

-1

-
1
2

0

1
2

1

Θ @radD

E
HΘ
L

FIG. 1. Plasticity of the correlation coefficient of two spin three-half quanta in a singlet state. (a)

EΨ4,2,1 −1,−1,+1,+1 is represented by the long-dashed blue curve, (b) EΨ4,2,1 −1,+1,+1,−1 is represented

by the dashed-dotted red curve, (c) EΨ4,2,1 +1,−1,+1,−1 is represented by the short-dashed green

curve, (d) 4
5EΨ4,2,1 − 3

2
,− 1

2
,+ 1

2
,+ 3

2

is represented by the dotted orange curve, and (e) Ecl,2,2(θ) is

represented by the classical linear black line.

Thus, the functional form of the two-particle correlation coefficients based on spin state

observables is independent of the absolute spin value.

III. FOUR SPIN ONE-HALF PARTICLE CORRELATIONS

To begin with the analysis of four-partite correlations, consider four spin-1
2
particles in

one of the two singlet states [8] |Ψ2,4,1〉 = 1√
3

[

| + + − −〉 + | − − + +〉 − 1
2

(

| + −〉 + | −

+〉
)(

|+−〉+ | −+〉
)

]

, and |Ψ2,4,2〉 = (|Ψ2,2,1〉)
2 = 1

2

(

|+−〉− |−+〉
)(

|+−〉− |−+〉
)

, where

|Ψ2,2,1〉 =
1√
2

(

|+−〉−|−+〉
)

is the two particle singlet “Bell” state. In what follows, we shall

concentrate on the first state |Ψ2,4,1〉, since |Ψ2,4,2〉 is just the product of two two-partite

singlet states, thus presenting entanglement merely among two pairs of two quanta.

The projection operators F corresponding to a four spin one-half particle joint measure-

ment aligned (“+”) or antialigned (“−”) along those angles are

F±±±±(θ̂, ϕ̂) =
1
2
[I2 ± σ(θ1, ϕ1)]⊗

1
2
[I2 ± σ(θ2, ϕ2)]⊗

⊗1
2
[I2 ± σ(θ3, ϕ3)]⊗

1
2
[I2 ± σ(θ4, ϕ4)] .

To demonstrate its physical interpretation, let us consider a concrete example: F−+−+(θ̂, ϕ̂)

stands for the proposition
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‘The spin state of the first particle measured along θ1, ϕ1 is “−”, the spin state

of the second particle measured along θ2, ϕ2 is “+”, the spin state of the third

particle measured along θ3, ϕ3 is “−”, and the spin state of the fourth particle

measured along θ4, ϕ4 is “+” .’

The joint probability to register the spins of the four particles in state Ψ2,4,1 aligned or

anti-aligned along the directions defined by (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) can be

evaluated by a straightforward calculation of

PΨ2,4,1±1,±1,±1±1(θ̂, ϕ̂) = Tr
[

ρΨ2,4,1
· F±±±±

(

θ̂, ϕ̂
)]

. (14)

The correlation coefficients and joint probabilities to find the four particles in an even or

in an odd number of spin-“−”-states when measured along (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and

(θ4, ϕ4) obey Peven + Podd = 1, as well as E = Peven − Podd; hence Peven = 1
2
[1 + E] and

Podd = 1
2
[1− E]. Thus, the four particle quantum correlation is given by (cf. Table I)

EΨ2,4,1−1,+1(θ̂, ϕ̂) = 1
3
{cos θ3 sin θ1 [− cos θ4 cos(ϕ1 − ϕ2) sin θ2 + 2 cos θ2 cos(ϕ1 − ϕ4) sin θ4] +

sin θ1 sin θ3 [2 cos θ2 cos θ4 cos(ϕ1 − ϕ3)+

(2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) + cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)) sin θ2 sin θ4] +

cos θ1 [2 sin θ2 (cos θ4 cos(ϕ2 − ϕ3) sin θ3 + cos θ3 cos(ϕ2 − ϕ4) sin θ4) +

cos θ2 (3 cos θ3 cos θ4 − cos(ϕ3 − ϕ4) sin θ3 sin θ4)]} .

(15)

If all the polar angles θ̂ are set to π/2, then this correlation function yields

EΨ2,4,1−1,+1(
π

2
,
π

2
,
π

2
,
π

2
, ϕ̂) =

1

3
[2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) + cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)] .

(16)

Likewise, if all the azimuthal angles ϕ̂ are all set to zero, one obtains

EΨ2,4,1−1,+1(θ̂) =
1

3
[2 cos(θ1 + θ2 − θ3 − θ4) + cos(θ1 − θ2) cos(θ3 − θ4)] . (17)

The plasticity of the correlation coefficient EΨ2,4,1−1,+1(θ̂) of Eq. (17) for various parameter

values θ is depicted in Fig. 2.

IV. SUMMARY

Compared to the two-partite quantum correlations of two-state particles, the plasticity of

the quantum correlations of states of more than two particles originates in the dependency
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FIG. 2. Plasticity of the correlation coefficient of four spin one-half quanta in a singlet state. (a)

EΨ2,4,1−1,+1(θ,
π
4 ,−θ, θ) is represented by the long-dashed blue curve, (b) EΨ2,4,1−1,+1(θ, θ,−θ, θ)

is represented by the dashed-dotted red curve, (c) EΨ2,4,1−1,+1(θ,−θ,−θ, θ) is represented by the

short-dashed green curve, (d) EΨ2,4,1−1,+1(θ,−θ,−θ, 0) is represented by the dotted orange curve,

and (e) EΨ2,4,1−1,+1(−θ,−θ, π4 , θ) is represented by the solid magenta line.

Peven = 1
2 [1 + E] , Podd = 1

2 [1− E] , E = Peven − Podd

EΨ2,4,1−1,+1(θ̂, ϕ̂) = 1
3 {cos θ3 sin θ1 [− cos θ4 cos(ϕ1 − ϕ2) sin θ2 + 2 cos θ2 cos(ϕ1 − ϕ4) sin θ4] +

sin θ1 sin θ3 [2 cos θ2 cos θ4 cos(ϕ1 − ϕ3)+

(2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) + cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)) sin θ2 sin θ4] +

cos θ1 [2 sin θ2 (cos θ4 cos(ϕ2 − ϕ3) sin θ3 + cos θ3 cos(ϕ2 − ϕ4) sin θ4) +

cos θ2 (3 cos θ3 cos θ4 − cos(ϕ3 − ϕ4) sin θ3 sin θ4)]}

EΨ2,4,1−1,+1(θ̂) =
1
3 [2 cos(θ1 + θ2 − θ3 − θ4) + cos(θ1 − θ2) cos(θ3 − θ4)] .

EΨ2,4,1−1,+1(
π
2 ,

π
2 ,

π
2 ,

π
2 , ϕ̂) =

1
3 [2 cos(ϕ1 + ϕ2 − ϕ3 − ϕ4) + cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4)]

EΨ2,4,2−1,+1(θ̂, ϕ̂) = [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] ·

[cos θ3 cos θ4 + cos(ϕ3 − ϕ4) sin θ3 sin θ4]

EΨ2,4,2−1,+1(θ̂) = cos(θ1 − θ2) cos(θ3 − θ4),

EΨ2,4,2−1,+1(
π
2 ,

π
2 ,

π
2 ,

π
2 , ϕ̂) = cos(ϕ1 − ϕ2) cos(ϕ3 − ϕ4),

TABLE I. Probabilities and correlation coefficients for finding an odd or even number of spin-“−”-

states for both four-partite singlet states. Omitted arguments are zero.
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of the multitude of angles involved, as well as by the multitude of singlet states in this

domain. For states composed from particles of more than two mutually exclusive outcomes,

the plasticity is also increased by the different values associated with the outcomes.

We have explicitly derived the quantum correlation functions of two- and four-partite spin

one-half, a well as two-partite systems of higher spin. All quantum correlation coefficients of

the two-partite spin observables have identical form, all being proportional to cos θ1 cos θ2+

cos(ϕ1−ϕ2) sin θ1 sin θ2. We have also argued that, by utilizing the plasticity of the quantum

correlation coefficients for spins higher that one-half, this well-known correlation function

can be “enhanced” by defining sums of quantum correlation coefficients, at least in some

domains of the measurement angles.

It would be interesting to know whether this plasticity of the quantum correlations

EΨl,2,1 λ−l,...,λ+l
for “very high” angular momentum l observables could be pushed to the

point of maximal violation of the Clauser-Horne-Shimony-Holt inequality without a bit ex-

change such as by using the “buildup” of a step function from the individual correlation

coefficients [9]; e.g., for 0 ≤ θ ≤ π,

sgn(x) =



















−1 for 0 ≤ x < π
2

0 for x = π
2

+1 for π
2
< θ ≤ π

=
4

π

∞
∑

n=0

(−1)n cos
[

(2n+ 1)
(

θ + π
2

)]

2n+ 1
. (18)

Any such violation of Boole-Bell type “conditions of possible experience” beyond the maxi-

mal quantum violations, as for instance derived by Tsirelson [10] and generalized in Ref. [11]

not necessarily generalizes to the multipartite, non dichotomic cases. Note also that such

a strong or even maximal violation of the Boole-Bell type “conditions of possible expe-

rience” beyond the maximal quantum violations needs not necessarily violate relativistic

causality [12, 13], or be associated with a “sharpening” of the angular dependence of the

joint occurrence of certain elementary dichotomic outcomes, such as “++,” “+−,” “−+” or

“−−,” respectively.
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