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The quantum correlations of two or more entangled particles present
the possibility of stronger-than-classical outcome coincidences. We
investigate binary correlations of quanta with spin one, three-half,
and higher in a state satisfying a uniqueness property in the sense
that knowledge of an outcome of one particle observable entails the
certainty that, if this observable were measured on the other parti-
cle(s) as well, the outcome of the measurement would be a unique
function of the outcome of the measurement performed. We also
investigate correlations of four particles with spin one-half.

1. Introduction

The possibility of a peculiar and “mind-boggling” type
of connectedness between two or more spatially sepa-
rated particles beyond classical correlations surprised
the quantum pioneers in their early exploration of
quanta. Already Schrédinger noted that a state of sev-
eral quantized particles or quanta could be entangled (in
Schrédinger’s own German terminology “verschrinkt”)
in the sense that it cannot be represented as the product
of states of the isolated, individual quanta, but is rather
defined by the joint or relative properties of the quanta
involved [1,2]. Typical examples of such joint properties
of entangled states are the propositions, “when measured
along two or more different directions, two spin one-half
particles have opposite spin” (defining the Bell singlet
state), or “when measured along a particular direction,
three spin one-half particles have identical spin” (one of
the three defining properties of the Greenberger-Horne—
Zeilinger—-Mermin state).

With respect to the outcome of certain measurements
on the individual particles in an entangled state, the ob-
servation of stronger-than-classical correlations for non-
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local, i.e., spatially and even causally separated, quanta
in “delayed choice” measurements has been experimen-
tally verified [3]. A typical phenomenological criterion of
such correlations is the increased or decreased frequency
of the occurrence of certain coincidences of outcomes,
such as the more- or less-often-than-classically expected
recordings of joint spin up and down measurements la-
beled by “++,” “+—," “—+” or “——,” respectively.

Stated pointedly, the “magic” behind the quantum cor-
relations as compared to classical correlations resides in
the fact that, for almost all measurement directions (de-
spite the collinear or orthogonal ones), an observer “Al-
ice,” when recording some outcome of a measurement,
can be sure that her partner “Bob,” although spatially
and causally disconnected from her, is either more or
less likely to record a particular measurement outcome
on his side. However, because of the randomness and the
uncontrollability of individual events, and because of the
no-cloning theorem, no classically useful information can
be transferred from Alice to Bob, or vice versa: The pa-
rameter independence and the outcome dependence of
otherwise random events ensure that the nonlocal cor-
relations among quanta cannot be directly used to com-
municate classical information. The correlations of joint
outcomes on Alice’s and Bob’s sides can only be verified
by collecting all the different outcomes ez post facto, re-
combining joint events one-by-one. Nevertheless, there
are the hopes and the visions to utilize nonlocal quantum
correlations for a wide range of explanations and appli-
cations; for instance, in quantum information theory [4]
and life sciences [5].

In what follows, a few known and novel quantum cor-
relations will be systematically enumerated. We will de-
rive the correlations between two and four two-state par-
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ticles in singlet states, as wel as the correlations of two
three-, four- and general d-state particles in a singlet
state. In doing so, we attempt to “sharpen” the non-
classical behavior beyond the standard quantum corre-
lations.

2. Two Particle Correlations

We now consider two particles or quanta. On each
of the two quanta, certain measurements (such as the
spin state or the polarization) of (dichotomic) observ-
ables O(a) and O(b) along the directions a and b, re-
spectively, are performed. The individual outcomes are
encoded or labeled by the symbols “—” and “+,” or val-
ues “— 1” and “+1” are recorded along the directions a
for the first particle, and b for the second particle, re-
spectively. A two-particle correlation function E(a,b) is
defined by averaging over the product of the outcomes
O(a);, O(b); € {—1,1} in the ith experiment for the total
of N experiments; i.e.,

1 N

Efa,b) = > 0(a);0b);. (1)

i=1

Quantum-mechanically, we follow the standard pro-
cedure for obtaining the probabilities, upon which the
correlation coefficients are based. We start from the
angular momentum operators defined, for instance, in
Schiff’s “Quantum Mechanics” [7, Chap. VI, Sec.24] in
arbitrary directions given by the spherical angular mo-
mentum coordinates § and ¢, as defined above. Then,
the projection operators corresponding to the eigenstates
associated with the different eigenvalues are derived from
the dyadic (tensor) product of normalized eigenvectors.
In the Hilbert-space-based quantum logic, every projec-
tor corresponds to a proposition that the system is in
a state corresponding to that observable. The quan-
tum probabilities associated with these eigenstates are
derived from the Born rule, assuming singlet states for
the physical reasons discussed above. These probabili-
ties contribute to the correlation coefficients.

2.1. Three-state particles
Observables

The angular momentum operator in an arbitrary direc-
tion 6, ¢ is given by its spectral decomposition

S1(0,0) = —F_(0,9) +0- Fo(8,9) + Fy (0, ¢), (2)
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where F_,Fy, and F, are the orthogonal projectors
associated with the eigenstates of Si(6,y). The gen-
eralized one-particle observable with the previous out-
comes of spin state measurements “coded” into the map
-1 = A, 0 = X, +1 — AL can be written as
Ri(6,0) = A_F_(0,0) + AoFo(0, ) + AL FL (6, ).

For the operationalization of 117 contexts contained
in their proof, Kochen and Specker [8] introduced an
observable based on spin one with degenerate eigenval-
ues corresponding to Ay = A_ = 1 and A9 = 0, or its
“inverted” form Ay = A_ = 0 and Ay = 1. The corre-
sponding correlation functions will be discussed below.

Singlet state

Consider the singlet state of two spin-one particles
|U321) = \/Lg (—]00) +| — +) + | + —)). Its vector space
representation can be explicitly enumerated by taking
the direction § = ¢ = 0 and recalling that |[+) = (1, 0,0),
|0> = (0, 1,0), and |—> = (0,0, ].), i.e., |\113,2,1> =

2(0,0,1,0,-1,0,1,0,0).

Results

The general computation of the quantum correlation co-
efficient yields

E‘I’3,2,1 A XAy (é’ Qb) =Tr I:p‘I’S,2,1 . Rll(éa (p) =

1
- 1_92{24A3 + 40X (M- + Ay) +22(A_ + A )2 —

—32(A_ — A4 )% cos B cos O+
+2(=2X0 + A + A, )% cos(26,) x
X [(3 + cos(2(p1 — p2))) cos(261) + 2sin(pr — <p2)2] +

+2(=2X0 + A_ + Ay)% %
X |cos (2 (p1 — ¢2)) + 2 cos (261) sin (p1 — (pz)Z] —
—32(A_ — A )% cos (@1 — p3) sin by sin B+

+8(=2X0 + A + Ap)% cos (o1 — p3) X
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x sin (261) sin (265) } (3)

For the sake of comparison, let us relate the rather
lengthy correlation coefficient in Eq. (3) to the stan-
dard quantum mechanical correlations based on the di-
chotomic outcomes, by setting A\g = 0, Ay = +1, and
A_ = —1. With these identifications,

P 2
Ey,,, 10+1(0,9) = ~3 [cos 01 cos b2+

~
~

. . 2
+cos(pr — p2) sinby sinbs] = 2 Bwy oy —1,41(6,0).  (4)

This correlation coefficient is functionally identical with
the spin one-half (two outcomes) correlation coefficients.
The correlation coeflicient resulting from the Kochen—
Specker observable corresponding to Ay = A_ = 1 and
Ao = 0 or its inverted form Ay = A_ =0 and A\g =1 is

~

By, ;. 41,041(0,0) = 57 {11 + cos[2(p1 — p2)]+

+4 cos(p1 — @2) sin(26;) sin(26,)+

+2[cos(26;) + cos(265)] sin’ (1 — p2)+

+ c0s(261) cos(262) [cos(2(p1 — p2)) + 3]},

Eg,,, 0,+1,0(0A, @) = 3 [cos by cos 62)+

+ cos(p1 — @2) sin 61 sin 02]2 ,

By, 5 +10,41(5, 5,9) = § {cos[2(p1 — 2)] + 3},

E‘I’3,2,1 0,+1,0(%a %a 92) = % cos? (‘Pl - @2)a

E‘I’s,z,l +1,0,+1(0a 0) O) = % {COS [2(01 - 02)] + 3} )

E‘I’3,2,1 0,41,0 (é, 0, 0) = % COS2 (01 — 02)

By comparing the quantum correlation coefficient
Ey,,, 10.41(0,0,0) &< — cos(f; — 05) of the spin opera-
tors in Eq. (4) with the quantum correlation coefficient of
the Kochen—Specker operators Ey, ,, +1.041(0,0,0) o
cos[2(6, — 62)] of Eq. (5), one could envision an “en-
hancement” of the quantum correlation coefficient for
higher-than one-half angular momentum observables,
by adding the weighted correlation coefficients gener-
ated from different labels A;. Indeed, in the domain
0 < |01 — 0] < %, the plasticity of Fg, ,, x_,,x0,A4; Can
be used to build up “enhanced” quantum correlations via

1 ~
5 {E‘I’s,z,l *1y0,+1(0a Oa 0)+
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+3 2E‘1’3,2,1 +1,0,+1(éa Oa 0) - 1] } =

1
=3 [—cos(f1 — 05) + cos 2(6; — 02)] <

<- COS(Bl - 02) = E‘I’z,z,l *lHrl(aa 0, 0) (6)
2.2. Four-state particles

Observables

The angular momentum operator in an arbitrary direc-

tion 6, ¢ can be written in a spectral form

3 1
S%(G,QO) = _iF—%(oa(P) - EF—%(0a90)+

1 3
+5F1(0,0) + 5 F 5 (0, 9). (7)

If we are only interested in spin state measurements
with the associated outcomes of spin states in units
of h, the associated two-particle operator is given by
S3 (01, 01)®S53 (02, 2). More generally, one could define
a two-particle operator by

®F>\,§,>\,;v\+;v\+g(02a‘P2)a (8)
2 2 2 2
where

X3 112y (0,0) =X s F_3(0,0)+

+)\_%F_%(0,QD)+)\%F+%(0,90)+)\%F+%(0,90). (9)

For the sake of the physical interpretation of this op-

erator (8), let us consider as the specific example of a

spin state measurement on two quanta: F)\ , (01,¢1) ®
-2

F,\+% (A2, p2) stands for the proposition

‘The outcome of the first particle measured
along 61,p1 is “A_3” and the outcome of

the second particle r?zeasured along 62, @2 is
” ’

“A_;’_ % )
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Fig. 1. Plasticity of the correlation coefficient of two spin three-half
quanta in a singlet state. (a) Eg, 2.1 —1,-1,+1,+1 is represented by
the long-dashed curve, (b) E\p4,2,’1 —1,+1,+1,—1 is represented by
the dashed-dotted curve, (c) By, +1,-1,+1,—1 is represented by
the short-dashed curve, (d) %E‘I'4,2,1 31413 is represented
by the dotted curve, and (e) E.2,2(0) is represented by the linear
line

Singlet state

The singlet state of two spin-3/2 observables can
be found by the general methods developed in
Ref. [9]. In this case, this amounts to sum-
ming all possible two-partite states yielding the zero
angular momentum multiplied by the correspond-
ing Clebsch—-Gordan coefficients (j1m1jam2|00) =

(712);% of mutually negative single par-
ticle states resulting in the zero total angular momen-
tum. More explicitly, for ]1 = = 2, [ta21) =
F5-5) -1 - 1,78 +[-5 1) Again
2 \[227 2 2’ 2 2032 )
this two-partite singlet state satlsﬁes the uniqueness
property. The four different spin states can be identified
with a Cartesian basis of the four-dimensional Hilbert
space |3) = (1,0,0,0), |3) = (0,1,0,0), |—3) =
(0,0,1,0), and |-3) = (0 0,0, 1), respectively.

5j1 ,jz(sml,*mz

Results

For the sake of comparison, let us again specify the
rather lengthy correlation coefficient in the case of gen-

eral observables with arbitrary outcomes A;, 2 =1,...,4
to the standard quantum mechanical correlations (4),
by setting A, s = +3, A = +1, Ay = —1 and

A_ ES g; ., by substituting the general outcomes
with spin state observables in units of . With these

identifications, the correlation coefficients can be directly
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calculated via S:3;i.e.,

33,
22

E\Il421——,—2,+2,+ (é,(ﬁ) -
=Tr {P\h,z,l [S% (01, 1) ® S3 (02’902)” -

= —Z [cos f1 cos B + cos(p1 — p2) sin By sin ;] =

8 A A
= 1_5E‘I’2,3,1 —1,+1(0’ ‘P) =

P 5 A~
= 5E\I’2,2,1 —%,—i—% (0’ 90) = ZE‘I’z,z,l *lHrl(aa (P) (10)
This correlation coefficient is again functionally identi-
cal with the spin one-half and spin one (two and three
outcomes) correlation coefficients.
The plasticity of the general correlation coefficient

E‘I’4,2,1 Az A 1A 12,3 0,0) =
2 2 2 2

N
~

:"I‘r p‘I’4,2,1F§_§,A_l,)\+l,)\+§( (11)
2 2 2 2

can be demonstrated by enumerating the special cases;
e.g.,

1
Ey,,, 1,-1,41,+41(0,0,0,0) = 3 [—7cosf — cos(30)],

1
1 [3cos(26) + 1],

E‘I’4,2,1 *1,+1,+1,71(0a 0) Oa 0) =

cosf — cos(30)] .
(12)

1
By,s,+1,-1,41,-1(0,0,0,0) = 3 [—

These functions are drawn in Fig. 1, to-
gether with the spin state correlation coefficient
4E\I,“1_,,_7,+ +3((9 0,0,0) = —cos# and the classi-

cal linear correlatlon coefficient Eq 22(0) = 26/7 — 1.

2.3. General case of two spin j particles

The general case of spin correlation values of two parti-
cles with an arbitrary spin j (see Appendix in [10] for a
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Probabilities and correlation coefficients for finding an odd or even number of spin-“—"-states for both four-partite

singlet states. Omitted arguments are zero

Peven:%[l"‘E},Podd:%[l_E]yE:Peven_ odd

E\y2,4,1,1,+1(0, @) = % {cos 03 sin 1 [— cos B4 cos(p1 — p2)sin B2 + 2 cos 02 cos(p1 — pa)sin 4] +

+ sin 01 sin 03 [2 cos B2 cos B4 cos(p1 — p3)+

+ (2cos(p1 + p2 — w3 — pa) + cos(p1 — p2) cos(p3 — @a)) sin B2 sin 4] +
+ cos 01 [2sin B (cos B4 cos(p2 — ¢3) sin B3 + cos B3 cos(pa2 — pa)sinbs) +

+ cos B (3cos B3 cosfs — cos(ps — pa)sin B3 sin f4)]}

By, 4,-1,41(0) = é [2cos(f1 + 02 — 03 — 04) + cos(81 — 02) cos(03 — 04)] .
Egyy1-1,+1(5,5,5:5:8) = 3 [2c0s(p1 + p2 — 3 — pa) + cos(p1 — p2) cos(p3 — pa)]

E\p2,4’2_1’+1( , @) = [cos 01 cos B2 + cos(p1 — p2) sin O sin O] X

X [cos 03 cos 04 + cos(p3 — p4) sin O3 sin 4]

By, 4 5-1,+1(0) = cos(61 — 62) cos(63 — 04),

T T

Ew,4:-1,41(5:%, 5, 5,P) = cos(p1 — p2) cos(ps — pa),

group-theoretic derivation) can be directly calculated in
an analogous way as before, yielding

E‘I’2,2j+1,1 —Jy—J+1 st i—1,4+] (0’ (P) =

=Tr {p‘l/z,zj+1,1 [SJ (01, <P1) ® Sj(02a ‘;02)]} =

i1 +37) [

3 cos 1 cos By + cos(p1 — 2) sin by sin 65].

(13)
Thus, the functional form of the two-particle correlation

coefficients based on spin state observables is indepen-
dent of the absolute spin value.

3. Four Spin One-Half Particle Correlations

To begin with the analysis of four-partite correlations,
we now consider four spin—% particles in one of the two

singlet states [9] |¥2,4,1) = % [| ++—-=)+|--+
)=+ =)+ =)+ = +)], and [Ba00) =
(12,210 = 5(I+ =) = [ =) (I + =) = | = +)), where
|¥20,1) = % (| i Bl —I—)) is the two particle singlet

“Bell” state. In what follows, we concentrate on the first
state |¥o 4,1), since | ¥y 4.2) is just a product of two two-
partite singlet states, thus presenting the entanglement
merely among two pairs of two quanta.

The projection operators F' corresponding to a joint
measurement of four spin one-half particles aligned (“+”)
or antialigned (“—”) along those angles are

P 1 1
Fiii1(0,0) = 3 Ia+0(61,01)]® 3 Iz £ o (02, 2)]®
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1 1
®§[H2i‘7(93,¢3)]® §[H2i0(94,¢4)]- (14)

To demonstrate the physical interpretation, let us con-
sider a specific example: F_,_,(6,¢) stands for the
proposition

‘The spin state of the first particle measured
along 01,1 is “—7, the spin state of the sec-
ond particle measured along 03, o is “+7, the
spin state of the third particle measured along
03, p3 is “—7”, and the spin state of the fourth

particle measured along 04, @4 is “+7 .’

The joint probability to register the spins of the four
particles in state ¥, 4,1 aligned or anti-aligned along the
directions defined by (01, ¢1), (02, ¢2), (03, ¢3), and (04,
©4) can be evaluated by a straightforward calculation of

P\Ilg,‘,,l:tl,:l:l,:tl:tl(éa @) =

=Tr |pw,,, Fratt (éﬁﬁ)] . (15)

The correlation coefficients and the joint probabilities
to find the four particles in an even or odd number of
spin-“—"-states when measured along (61, 1), (62, ¢2),
(03a ‘P3)a and (04’ 904) Obey Peyen + Poga = ]-a as well as
E = Peyen — Poqa; hence, Peven = % []- + E] and P,qq =
1[1— E]. Thus, the four particle quantum correlation
is given by (cf. Table)

E‘I’2,4,1*1,+1(0Aa (p) =
1 .
=3 {cos 83 sin @y [— cos B4 cos(p1 — p2) X

X sinfy + 2 cos O cos(p1 — @4) sinfy] +
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Fig. 2. Plasticity of the correlation coefficient of
four spin one-half quanta in a singlet state. (a)

E\p2,4’1_1’+1(0, %,—0,0) is represented by the long-dashed
curve, (b) Eg,, ,-1,+1(0,0,—0,0) is represented by the dashed-
dotted curve, (c) E‘1,2’4,1_17+1(9, —6,—6,0) is represented by the
short-dashed curve, (d) Ew, ,,-1,+1(6,—0,—0,0) is represented
by the dotted curve, and (e) E\y2,4,1,11+1(—0,—0, 1,0) is
represented by the solid line

+ sin 6 sin @3 [2 cos @5 cos 04 cos(p1 — p3)+
+ (2 cos(p1 + 2 — 3 — pa)+

+ cos(p1 — p2) cos(ps — pa)) sin by sin 4] +
+ cos 61 [2sin By (cos b4 cos(p2 — p3) sinf3+

+ cos 03 cos(ps — pg) sinfy) +
+ cos B2 (3cosfz cosfs — cos(ps — pa)sinfssinby)]}.
(16)

If all the polar angles 6 are set to /2, then this corre-
lation function yields

| 3
o 3

T T
E‘I’z,4,1—1,+1( a§’ aEa‘P):

1
= g [2cos(pr + 2 — 93 — pa)+

+cos(pr — p2) cos(ps — pa)] -
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Likewise, if all the azimuthal angles ¢ are set to zero, we
obtain

A 1
E‘I’2,4,1*1,+1(0) = g [2 COS(HI + 02 - 03 - 04)+

+ cos(f; — 02) cos(f3 — 64)]. (18)

The plasticity of the correlation coefficient
Ey,,, 1,41(0) of Eq. (18) for various parameter

values 6 is depicted in Fig. 2.

4. Summary

Compared with the two-partite quantum correlations of
two-state particles, the plasticity of the quantum cor-
relations of states of more than two particles originates
in the dependence of the multitude of angles involved, as
well as the multitude of singlet states in this domain. For
the states related to the particles of more than two mu-
tually exclusive outcomes, the plasticity is also increased
by various values associated with the outcomes.

We have explicitly derived the quantum correlation
functions of two- and four-partite spin one-half systems,
as well as two-partite systems of higher spin. All quan-
tum correlation coefficients of the two-partite spin ob-
servables have identical form, all being proportional to
cos 01 cos s + cos(p1 — @2)sinfy sinf. We have also
argued that, by utilizing the plasticity of the quantum
correlation coefficients for spins higher that one-half,
this well-known correlation function can be “enhanced”
by defining sums of quantum correlation coeflicients, at
least in some domains of the measurement angles.

It would be interesting to know whether this plastic-
ity of the quantum correlations Ey, , , x_,,....x,, for “very
high” angular momentum [/ observables could be pushed
to the point of the maximal violation of the Clauser—
Horne—Shimony-Holt inequality without an insignificant
exchange such as that with the use of the “buildup” of
a step function from the individual correlation coeffi-
cients [10]; e.g., for 0 < 6 <,

-1 for0<z <3
sgn(z) = 0 forz=7F =
+1 for s <0<

% i (=1)"cos [(2n+ 1) (8 + Z)]

19
2n +1 (19)

Any such violation of the Boole-Bell-type “conditions of
possible experience” beyond the maximal quantum vio-
lations as those, for instance, derived by Tsirelson [11]
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and generalized in Ref. [12] not necessarily generalizes
to the multipartite nondichotomic cases. Note also that
such a strong or even the maximal violation of the Boole—
Bell-type “conditions of possible experience” beyond the
maximal quantum violations needs not necessarily vi-
olate the relativistic causality [13, 14] or be associated
with “sharpening” the angular dependence of the joint
occurrence of certain elementary dichotomic outcomes
such as “++,” “4+—" “—4" or “——" respectively.
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1010 IJIACTUYHOCTI HEJIOKAJIbHUX KBAHTOBUX
KOPEJIAIIIN

K. Ceo3ia
Pezmowme

KBanTOBi KOpesaril ABox i 6inbIIe meperyyTaHux YacTUHOK Hala-
FOTh MOXKJIMBICTB JJIs1 KPAIoi 3012KHOCT] pe3yJIbTaTiB, HiXK y KJIACH-
YHOMY BUMAJKY. JIOCizKeHo mapHi KOpessIlii YaCTHHOK 3i CIIIHOM
1, 3/2 Ta Bume y craHi, mO 33J0BOJBHSE BHEMOTY OAHO3HAYHOCTI
B TOMY CEHCi, IO 3HAHHA PE3YJIbTATY J[JIsd [IapaMeTpa OXHIi€l da-
CTHUHKHU JA€ BIIEBHEHICTh y TOMY, IO, AKIIO Ie mapaMmerp 6ymo 6u
BUMIPSIHO [JIsi APYTOl YaCTHUHKH, PE3yJIbTaT BUMIpY Oyze omHO3HA-
9HOI (DYHKIIEO IIONEPENHBOTO pPe3yabTaTy. TaKoXK JOCIHiIKEHO
KOpessAnil Y0THPHOX JACTHUHOK 3i cmimom 1/2.
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