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Abstract. Two novel computing models based on an infinite tessellation of space-time are introduced. They
consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization
of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of
hypercomputations and can, for instance, “solve” the halting problem for Turing machines. These two
models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other
hand, they differ greatly for computations that involve an infinite number of building blocks: the first one
shows indeterministic behavior, whereas the second one halts. Both models are capable of challenging our
understanding of computability, causality, and space-time.

PACS. 05.90.4+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems —
02.90.4p Other topics in mathematical methods in physics — 47.54.-r Pattern selection; pattern formation

1 Introduction

Every physically relevant computational model must be
mapped into physical space-time and vice versa [1-3].
In this line of thought, Von Neumann’s self-reproducing
Cellular Automata [4] have been envisioned by Zuse [5]
and other researchers [6-9] as “calculating space;” i.e., as
a locally connected grid of finite automata [10] capable
of universal algorithmic tasks, in which intrinsic [11] ob-
servers are embedded [12]. This model is conceptually dis-
creet and noncontinuous and resolves the eleatic “arrow”
antinomy [13-16] against motion in discrete space by in-
troducing the concept of information about the state of
motion in between time steps.

Alas, there is no direct physical evidence supporting
the assumption of a tessellation of configuration space
or time. Given enough energy, and without the possible
bound at the Planck length of about 1073° m, physical
configuration space seems to be potentially infinitely di-
visible. Indeed, infinite divisibility of space-time has been
utilized for proposals of a kind of “Zeno oracle” [17], a
progressively accelerated Turing machine [18-20] capa-
ble of hypercomputation [21-23]. Such accelerated Tur-
ing machines have also been discussed in the relativistic
context [24,25]. In general, a physical model capable of
hypercomputation by some sort of “Zeno squeezing” has
to cope with two seemingly contradictory features: on the
one hand, its infinite capacities could be seen as an ob-
stacle of evolution and therefore require a careful anal-
ysis of the principal possibility of motion in finite space
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and time via an infinity of cycles or stages. On the other
hand, the same infinite capacities could be perceived as
an advantage, which might yield algorithms beyond the
Turing bound of universal computation, thus extending
the Church-Turing thesis.

The models presented in this article unify the con-
nectional clarity of von Neumann’s Cellular Automaton
model with the requirement of infinite divisibility of cell
space. Informally speaking, the scale-invariant cellular au-
tomata presented “contain” a multitude of “spatially” and
“temporally” ever decreasing copies of themselves, thereby
using different time scales at different layers of cells. Cells
at different levels are also capable to communicate, i.e.,
exchange information, with these copies, resulting in ever
smaller and faster cycling cells. The second model is based
on Petri nets which can enlarge themselves.

The advantage over existing models of accelerated
Turing machines — which are just Turing machines with
a geometrically progression of accelerated time cycles —
resides in the fact that the underlying computational
medium is embedded into its environment in a uniform
and homogeneous way. In these new models, the entire
universe, and not just specially localized parts therein, is
uniformly capable of the same computational capacities.
This uniformity of the computational environment could
be perceived as one further step towards the formalization
of continuous physical systems [26] in algorithmic terms.
In this respects, the models seem to be closely related to
classical continuum models, which are at least in princi-
ple capable of unlimited divisibility and information flows
at arbitrary small space and time dimensions. At present
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however, for all practical purposes, there are finite bounds
on divisibility and information flow.

To obtain a taste of some of the issues encountered in
formalizing this approach, note that an infinite sequence
of ever smaller and faster cycling cells leads to the fol-
lowing situation. Informally speaking, let a self-similar
cellular automaton be a variant of a one-dimensional el-
ementary cellular automaton, such that each cell is up-
dated twice as often as its left neighbor. The cells of
a self-similar cellular automaton can be enumerated as
ce.yC_9,C_1,C0,C1,Co,... Starting at time 0 and choos-
ing an appropriate time unit, cell ¢; is updated at times
1/2¢,2/2% 3/2%, ... Remarkably, this definition leads to in-
determinism. To see this, let s(i,t) be the state of cell
i at time t. Now, the state s(0,1) depends on s(1,1/2),
which itself depends on s(2,1/22) and so on, leading to
an infinite regress. In general, in analogy to Thomson’s
paradox [16,27], this results in an undefined or at least
nonunique and thus indeterministic behavior of the au-
tomaton.

This fact relates to the following variant of Zeno’s para-
dox of a runner, according to which the runner cannot even
get started [16]. He must first run to the half way point,
but before that he must run half way to the half way point
and so on indefinitely. Whereas Zeno’s runner can find res-
cue in the limit of convergent real sequences, there is no
such relieve for the discrete systems considered.

Later on, two restrictions on self-similar automata
(build from scale-invariant cellular automata) are pre-
sented, which are sufficient conditions for deterministic
behavior, at least for finite computations. Furthermore, a
similar model based on a variant of Petri nets will be intro-
duced, that avoids indeterminism and halts in the infinite
limit, thereby coming close to the spirit of Zeno’s paradox.

The article is organized as follows. Section 2 defines
the Turing machine model used in the remainder of the
article, and introduces two hypercomputing models: the
accelerated and the right-accelerated Turing machine. In
Section 3 self-similar as well as scale-invariant cellular au-
tomata are presented. Section 4 is devoted to the con-
struction of a hypercomputer based on self-similar cellu-
lar automata. There is a strong resemblance between this
construction and the right-accelerated Turing machine, as
defined in Section 2. A new computing model, the self-
similar Petri net is introduced in Section 5. This model
features a step-to-step equivalence to self-similar cellular
automata for finite computations, but halts in the infinite
case. The same construction as in Section 4 is used to
demonstrate that self-similar Petri nets are capable of hy-
percomputation. The final section contains some conclud-
ing remarks and gives some directions for future research.

2 Turing machines and accelerated turing
machines

The Turing machine is, beside other formal systems that
are computationally equivalent, the most powerful model
of classical computing [28-30]. We use the following model
of a Turing machine [10].
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Definition 1 (Turing machine). Formally, a Turing
machine is a tuple M = (Q, X, I,0,qo, B, F), where Q
is the finite set of states, I" is the finite set of tape sym-
bols, X C I is the set of input symbols, gy € @ is the start
state, B € I'\ X' is the blank, and F' C @ is the set of final
states. The next move function or transition function 0 is
a mapping from Q x I" to Q x I' x {L, R}, which may be
undefined for some arguments.

The Turing machine M works on a tape divided into
cells that has a leftmost cell but is infinite to the right.
Let 6(¢q,a) = (p,b, D). One step (or move) of M in state
q and the head of M positioned over input symbol a con-
sists of the following actions: scanning input symbol a,
replacing symbol a by b, entering state p and moving the
head one cell either to the left (D = L) or to the right
(D = R). In the beginning, M starts in state gy with a
tape that is initialized with an input word w € X*, start-
ing at the leftmost cell, all other cells blank, and the head
of M positioned over the first symbol of w. We need some-
times the function ¢ split up into three separate functions:
5((]7 (1) = ((SQ (Q7 a)u 6F (qu (1), 5D (Q7 a))

The configuration of a Turing machine M is denoted by
a string of the form «ajqgas, where ¢ € Q and aq, a9 € I'™.
Here ¢ is the current state of M, «y is the tape content
to the left, and as the tape content to the right of the
head including the symbol that is scanned next. Leading
and trailing blanks will be omitted, except the head has
moved to the left or to the right of the non-blank con-
tent. Let ayqas and ofpaly be two configurations of M.
The relation ajqas Far ofpal, states that M with con-
figuration ajqas changes in one step to the configuration
oy pay. The relation H3, denotes the reflexive and transi-
tive closure of ;.

The original model of a Turing machine as introduced
by Alan Turing contained no statement about the time in
which a step of the Turing machine has to be performed.
In classical computation, a “yes/no”-problem is therefore
decidable if, for each problem instance, the answer is ob-
tained in a finite number of steps. Choosing an appropriate
time scheduling, the Turing machine can perform infinitely
many steps in finite time, which transcends classical com-
puting, thereby leading to the following two hypercomput-
ing models. The concept of an accelerated Turing machine
was independently proposed by Bertrand Russell, Ralph
Blake, Hermann Weyl and others (see Refs. [20,31]).

Definition 2 (Accelerated Turing machine). An ac-
celerated Turing machine is a Turing machine which per-
forms the nth step of a calculation in 1/2™ units of time.

The first step is performed in time 1, and each sub-
sequent step in half of the time before. Since 1+ 1/2 +
1/4+1/8 4 ... = 2, the accelerated Turing machine can
perform infinitely many steps in finite time. The acceler-
ated Turing machine is a hypercomputer, since it can, for
example, solve the halting problem, see, e.g., Ref. [20]. If
the output operations are not carefully chosen, the state
of a cell becomes indeterminate, leading to a variation of
Thomson’s lamp paradox. The open question of the phys-
ical dynamics in the limit reduces the physical plausibility
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of the model. The following model of a hypercomputing
Turing machine has a different time scheduling, thereby
avoiding some of the paradoxes that might arise from the
previous one.

Definition 3 (Right-accelerated Turing machine).
Let the cells of the tape be numbered from the left to the
right co, c1, ca, . ... A right-accelerated Turing machine is a
Turing machine that takes 1/2™ units of time to perform a
step that moves the head from cell ¢,, to one of its neighbor
cells.

Theorem 1. There exists a right-accelerated Turing ma-
chine that is a hypercomputer.

Proof. Let My be a universal Turing machine. We con-
struct a Turing machine M that alternates between sim-
ulating one step of My and shifting over the tape content
one cell to the right. We give a sketch of the construc-
tion, reference [10] contains a detailed description of the
used techniques. The tape of My contains one additional
track that is used to mark the cell that is read next by
the simulated My. The finite control of My is able to
store simultaneously the state of the head of My as well
as a tape symbol of M. We assume that the input of My
is surrounded by two special tape symbols, say $. At the
start of a cycle, the head of M is initially positioned over
the left delimiter $. My scans the tape to the right, till it
encounters a flag in the additional track that marks the
head position of M. Accessing the stored state of My,
M simulates one step of My thereby marking either the
left or the right neighbor cell as the cell that has to be vis-
ited next in the simulation of Mj;. If necessary, a blank is
inserted left to the right delimiter $, thereby extending the
simulated tape of My. Afterwards the head of M moves
to the right delimiter $ to start the shift over that is per-
formed from the right to the left. M repeatedly stores
the symbols read in its finite control and prints them to
the cell to the right. After the shift over, the head of My
is positioned over the left delimiter $ which finishes one
cycle.

We now give an upper bound of the cycle time. Let n
be the number of cells, from the first $ to the second one.
Without loss of generality we assume that ¢y contains the
left $. My scans from the left to the right and simulates
one step of My which might require to go an additional
step to the left. If cell ¢; is to be read next, the head of My,
cannot move to the right, otherwise it would fall off the
tape of My . Therefore the worst case occurs if the cell co
is marked as cell that My has to be read next. In this case
we obtain 1+1/241/4+1/2+1/4+1/8+...41/2"7! < 3.
The head of My is now either over cell ¢,_1, or over
cell ¢, if a insertion was performed. The shift over vis-
its each cell ¢;,1 < i < n three times, and ¢y two times.
Therefore the following upper bound of the time of the
shift over holds: 3(1 + 1/2 4+ 1/4+ ...1/2") < 6. We
conclude that if the cycle started initially in cell ¢, it
took less than time 9/2". If My halts on its input, M
finishes the simulation in a time less than 9(1 + 1/2 +
1/4 +...) = 18. My therefore solves the halting prob-
lem of Turing machines. We remark that if M does not
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halt, the head of M vanishes in infinity, leaving a blank
tape behind. Q.E.D.

A right-accelerated Turing machine is, in contrast to
the accelerated one, in control over the acceleration. This
can be used to transfer the result of a computation back
to slower cells. The construction of an infinite machine,
as proposed by Davies [19], comes close to the model of a
right-accelerated Turing machine, and his reasoning shows
that a right-accelerated Turing machine could be build
within a continuous Newtonian universe.

3 Self-similar and scale-invariant cellular
automata

3.1 Basic definitions

Cellular automata are dynamical systems in which space
and time are discreet. The states of cells in a regular lat-
tice are updated synchronously according to a local deter-
ministic interaction rule. The rule gives the new state of
each cell as a function of the old states of some “nearby”
neighbor cells. Each cell obeys the same rule, and has a
finite (usually small) number of states. For a more com-
prehensive introduction to cellular automata, we refer to
references [4,8,32-34].

A scale-invariant cellular automaton operates like an
ordinary cellular automaton on a cellular space, consist-
ing of a regular arrangement of cells, whereby each cell
can hold a value from a finite set of states. Whereas the
cellular space of a cellular automaton consists of a regular
one- or higher dimensional lattice, a scale-invariant cellu-
lar automaton operates on a cellular space of recursively
nested lattices which can be embedded in some Euclidean
space as well.

The time behavior of a scale-invariant cellular au-
tomaton differs from the time behavior of a cellular au-
tomaton: cells in the same lattice synchronously change
their state [35], but as cells are getting smaller in deeper
nested lattices, the time steps between state changes in the
same lattice are assumed to decrease and approach zero
in the limit. Thereby, a finite speed of signal propagation
between adjacent cells is always maintained. The scale-
invariant cellular automaton model gains its computing
capabilities by introducing a local rule that allows for in-
teraction between adjacent lattices [36]. We will introduce
the scale-invariant cellular automaton model for the one-
dimensional case, the extension to higher dimensions [37]
is straightforward.

A scale-invariant cellular automaton, like a cellular au-
tomaton, is defined by a cellular space, a topology that de-
fines the neighborhood of a cell, a finite set of states a cell
can be in, a time model that determines when a cell is up-
dated, and a local rule that maps states of neighborhood
cells to a state. We first define the cellular space of a scale-
invariant cellular automaton. To this end, we make use
of standard interval arithmetic. For a scalar A € R and a
(half-open) interval [x,y) C Rset: A+[z,y) = [\ -z, A\+y)
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Fig. 1. Space and topological structure of a scale-invariant cellular automaton.
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Fig. 2. Temporal dependencies of a scale-invariant cellular automaton.

and Az, y) = [Az, \y). We denote the unit interval [0, 1)
by 1.

Definition 4 (Cellular space and space operators).
The cellular space C, the set of all cells of the scale-
invariant cellular automaton, is the set C = {2%(i +
1)li,k € Z}. The neighborhood of a cell ¢ is deter-
mined by the following operators op : C — C. For a
cell ¢ = 2¥(i + 1) in C let c. = 2F(i — 1 + 1) be the
left neighbor, ¢, = 2*(i + 1 + 1) the right neighbor,
¢y = 28F1([4] + 1) the parent, ¢, = 2571(2i + 1) the
left child, and e = 2F71(2i + 1 + 1) the right child of c.
The predicate left(c) is true if and only if the cell ¢ is the
left child of its parent.

The cellular space C is the union of all lattices Lj =
{2%(i + 1)|i € Z}, where k is an integer. This topology
is depicted in Figure 1. For notational convenience, we
introduce a further operator, this time from C to C x C,
that maps a cell to its both child cells: ¢; = (¢, ex). We
remark that according to the last definition for each cell
either left(c) or —left(c) is true. Later on, we will consider
scale-invariant cellular automata where not each cell has
a parent cell. If ¢ = 2¥(i + 1) is such a cell, we set by con-
vention left(c) = 1 if i mod 2 = 0, otherwise left(c) = 0.

All cells in lattice Ly are updated synchronously at
time instances 2¥i where i is an integer. The time interval
between two cell updates in lattice Lj is again a half-open
interval 2F(; + 1) and the cycle time, that is the time
between two updates of the cell, is therefore 2¥. A simple
consequence of this time model is that child cells cycle
twice as fast and the parent cell cycle half as fast as the
cell itself.

Definition 5 (Time scale and time operators). The
time scale 7 is the set of all possible time intervals, which
is in the one-dimensional case equal to the set C: 7 =
{2%(i + 1)|i, k € Z}. The temporal dependencies of a cell

are expressed by the following time operators op : 7 — 7.
For a time interval t = 2F(i + 1) let t._ = 2¥(i — 1 + 1),
tr =28 (S + 1), ¢, =212 — 24 1), and ¢, =
2F=1(2j — 1 4+ 1). The predicate coupled(t) is true if and
only if the state change of a cell at the beginning of ¢
occurs simultaneously with the state change of its parent
cell.

The usage of time intervals instead of time instances,
has the advantage that a time interval uniquely identi-
fies the lattice where the update occurs. Figure 2 depicts
the temporal dependencies of a cell: to the left it shows a
coupled state change, to the right an uncoupled one. We
remark that we denoted space and time operators by the
same symbols, even if their mapping is different. In apply-
ing these operators, we take in the remainder of this paper
care, that the context of the operator is always clearly de-
fined.

At any time, each cell is in one state from a finite state
set Z. The cell state in a given time interval is described
by the state function s(c,t), which maps cells and time
intervals to the state set. The space-time scale S of the
scale-invariant cellular automaton describes the set of al-
lowed pairs of cells and time intervals: S = {(¢,t)|c €
C,t € T and |¢| = [t|}. Then, the state function s can
be expressed as a mapping s : S — Z. The local rule
describes the evolution of the state function.

Definition 6 (Local rule). For a cell ¢ and a time in-
terval t, where (c,t) is in S, the evolution of the state
is given by the local rule f of the scale-invariant cellular
automaton

s(e,t) = f(s(er,tp), s(ee,t), s(e, t), s(e—, t),
s(ey,t,), s(ep, ), left(c), coupled(t)). (1)

In accordance with the definition, the expanded form of a
expression of the kind s(cy,t ) is (s(c,t ), s(es,,t)).
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The local rule f is a mapping from Z® x {0,1}? to Z. Be-
side the dependencies on the states of the neighbor cells,
the new state of the cell further depends on whether the
cell is the left or the right child of its parent cell and
whether the state change is coupled or uncoupled to the
state change of its parent cell. Formally, a scale-invariant
cellular automaton A is denoted by the tuple A = (Z, f).
There are some simplifications of the local rule possible,
if one allows for a larger state set. For instance, the val-
ues of the predicates left and coupled could be stored as
substate in the initial configuration. If the local rule ac-
cordingly updates the value of coupled, the dependencies
on the boolean predicates could be dropped from the local
rule.

As noted in the introduction the application of the lo-
cal rule in its general form might lead to indeterministic
behavior. The next subsection introduces two restrictions
of the general model that avoid indeterminism at least for
finite computations. A special case of the local rule is a rule
of the form f(s(c—,t_),s(c,t—), s(c_,t_)), which is the
constituting rule of a one-dimensional 3-neighborhood cel-
lular automaton. In this case, the scale-invariant cellular
automaton splits up in a sequence of infinitely many non-
connected cellular automata. This shows that the scale-
invariant cellular automaton model is truly an extension
of the cellular automaton model and allows us to view a
scale-invariant cellular automaton as an infinite sequence
of interconnected cellular automata.

We now examine the signal speed that is required to
communicate state changes between neighbor cells. To this
end, we select the middle point of a cell as the source and
the target of a signal that propagates the state change of
a cell to one of its neighbor cells. A simple consideration
shows that the most restricting cases are the paths from
the space time points (c—,t_), (¢1,t1), (e ,tx,) to (¢, t)
if not coupled(t). The simple calculation delivers the re-
sults 1,1, and %, respectively, hence a signal speed of 1 is
sufficient to deliver the updates in the given timeframe. A
more general examination takes also the processing time
of a cell into account. If a cell in L, takes time 2*p to pro-
cess their inputs and if we assume a finite signal speed of
v, the cycle time of a cell in L must be at least 2%(p+v).
In sum, as long as the processing time is proportional to
the diameter of a cell, we can always find a scaling factor
t — Mt, such that the scale-invariant cellular automaton
has cycle times that conform to the time scale 7.

3.2 Self-similar cellular automata and indeterminism

The construction of a hypercomputer in section 4 uses a
simplified version of a scale-invariant cellular automaton,
which we call a Self-similar Cellular Automaton.

Definition 7 (Self-similar cellular automaton). A
self-similar cellular automaton has the cellular space C =
{2%1|k € Z}, the time scale T = {2%(i + 1)|i,k € Z},
and the finite state set Z. The space-time scale of a self-
similar cellular automaton is the set S = {(c,t)[c € C,t €
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7T and |c| = |t|}. The self-similar cellular automaton has
the following local rule: for all (c,t) € S

s(e,t) = f(S(CT7 tT)v s(e,t—), S(C/v t/)v 3(0/7 t\)?

coupled(t)). (2)
The local rule f is a mapping from Z* x {0,1} to Z.
Formally, a self-similar cellular automaton A is denoted
by a tuple A = (Z, f). By restricting the local rule of a
scale-invariant cellular automaton, a self-similar cellular
automaton can also be constructed from a scale-invariant
cellular automaton. Consider a scale-invariant cellular au-
tomaton whose local rule does not depend on the cell
neighbors c_, c_., and c\,. Then, the resulting scale-
invariant cellular automaton contains the self-similar cel-
lular automaton as subautomaton.

We introduce the following notation for self-similar cel-
lular automata. We index a cell [0, 2%) by the integer —k,
that is a cell with index k has a cycle time of 27%. We call
the cell k—1 the upper neighbor and the cell £+1 the lower
neighbor of cell k. Time instances can be conveniently ex-
pressed as a binary number. If not stated otherwise, we
use the cycle time of cell 0 as time unit.

We noted already in the introduction that the evo-
lution of a scale-invariant cellular automaton might lead
to indeterministic behavior. We offer two solutions, one
based on a special quiescent state, the other one based on
a dynamically growing lattice.

Definition 8 (Short-circuit evaluation). A state ¢ in
the state set Z is called a quiescent state with regard to
the short-circuit evaluation, if f(q, q,?,?,?) = g, where the
question mark sign “?” either represents an arbitrary state
or a boolean value, depending on its position. Whenever a
cell is in state ¢, the cell does not access its lower neighbor.

The cell remains as long in the quiescent state as long
as the upper neighbor is in the quiescent state, too. This
modus of operandi corresponds to the short-circuit evalu-
ation of logical expressions in programming languages like
C or Java. If the self-similar cellular automaton starts in
an initial configuration of the form zgz; ... z,qqq . .. at cell
0, the infinite regress is interrupted, since cell n+2 evolves
to ¢ without being dependent on cell n + 3.

Definition 9 (Dynamically growing self-similar
cellular automaton). Let ¢ be a state in the state set
Z, called the quiescent state. A dynamically growing
self-similar cellular automaton initially starts with the
finite set of cells 0,...,n and the following boundary
condition. Whenever cell 0 or the cell with the highest
index k is evolved, the state of the missing neighbor cell
is assumed to be ¢. The self-similar cellular automaton
dynamically appends cells to the lower end when needed:
whenever the cell with the highest index k enters a state
that is different from the quiescent state, a new cell k + 1
is appended, initialized with state ¢, and connected to
the cell k. To be more specific: If k is the highest index,
and cell k evolves at time 27%i to state z # ¢, a new cell
k 4+ 1 in state ¢ is appended. The cell performs its first
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transition at time 27%(i + 1/2), assuming state ¢ for its
missing lower neighbor cell.

We note that the same technique could also be applied
to append upper cells to the self-similar cellular automa-
ton, although in the remainder of this paper we only deal
with self-similar cellular automata which are growing to
the bottom. Both enhancements ensure a deterministic
evaluation either for a configuration where only a finite
number of cells is in a nonquiescent state or for a finite
number of cells.

Definition 10 (Finite and final configuration). A
configuration of a self-similar cellular automaton A is
called finite if only a finite number of cells is different
from the quiescent state. Let C' be a finite configuration
and C’ the next configuration in the evolution that is dif-
ferent to C. C’ is again finite. We denote this relationship
by C a4 C’. The relation % is again the reflexive and
transitive closure of 4.

A self-similar cellular automaton as a scale-invariant
cellular automaton cannot halt by definition and runs for-
ever without stopping. The closest analogue to the Turing
machine halting occurs, when the configuration stays con-
stant during evolution. Such a configuration that does not
change anymore is called final.

4 Constructing a hypercomputer

In this section, we shall construct an accelerated Turing
machine based on a self-similar cellular automaton. A self-
similar cellular automaton which simulates the Turing ma-
chine My specified in the proof of Theorem 1 in a step-
by-step manner is a hypercomputer, since the resulting
Turing machine is a right-accelerated one. We give an al-
ternative construction, where the shift over to the right is
directly embedded in the local rule of the self-similar cel-
lular automaton. The self-similar cellular automaton will
simultaneously simulate the Turing machine and shift the
tape content down to faster cycling cells. The advantages
of this construction are the smaller state set as well as a
resulting faster simulation.

4.1 Specification

Let M = (Q,X,I,0,q0, B, F) be an arbitrary Turing
machine. We construct a self-similar cellular automaton
Ay = (Z, f) that simulates M as follows. First, we sim-
plify the local rule by dropping the dependency on t_,
obtaining

s(e,t) = f(sler, ty), s(e, tn), s(e ,t), coupled(t)). (3)

The state set Z of Ay is given by

Z=TU(I'x{=Hu@xNU(@QxTIx{=})
U{D, €,<,<,>,>5,>q)
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We write @ for an element (a,—) in I' x {—}, (g, a)
—_

for an element (g,a) in @ x I', and (g,a) for an ele-
ment (g,a,—) in @ X I' x {—}. To simulate M on the
input w = ai...an in X* n > 1, Ay is initialized with
the sequence <i{qo,a1)asas...a,> starting at cell 0, all
other cells shall be in the quiescent state [I. If w = aq,
Ajs is initialized with the sequence Z(qo, a1)Br>, and if
w = e,i}he empty word, Ay, is initialized with the se-
quence <{qo, B)Br>. We denote the initial configuration
by Cp, or by Cy(w) if we want to emphasize the depen-
dency on the input word w. The computation is started at
tirr]1€e 0, i.e. the first state change of cell k£ occurs at time
27", .

The elements (g, a) and (g, a) act as head of the Turing
machine including the input symbol of the Turing machine
that is scanned next. To accelerate the Turing machine, we
have to shift down the tape content to faster cycling cells
of the self-similar cellular automaton, thereby taking care
that the symbols that represent the non-blank content of
the Turing machine tape are kept together. We achieve
this by sending a pulse, which is just a symbol from a
subset of the state set, from the left delimiter < to the
right delimiter > and back. Each zigzag of the pulse moves
the tape content one cell downwards and triggers at least
one move of the Turing machine. Furthermore a blank is
inserted to the right of the simulated head if necessary.
The pulse that goes down E}presented by exactly one

element of the form <, @, (q,a),>p, or >4, the upgoing
pulse is represented by the element <.

The specification of the values for the local rule f for all
possible arguments is tedious, therefore we use the follow-
ing approach. A coupled transition of two neighbor cells
can perform a simultaneous state change of the two cells.
If the state changes of these two neighbor cells is inde-
pendent of their other neighbors, we can specify the state
changes as a transformation of a state pair into another
one. Let z1, 29, 21, 25 be elements in Z. We call a mapping
of the form z; z3 — 2} 2z} a block transformation. The
block transformation z; zo +— 24 25 defines a function map-
ping of the form f(x,z21,22,0) = f(x,21,22,1) = 2] and
f(z1,22,9,1) = 24 for all z,y in Z. Furthermore, we will
also allow block transformations that might be ambiguous
for certain configurations. Consider the block transforma-
tions z1 zo +— 2] 25 and z2 z3 — 2z z§ that might lead
to an ambiguity for a configuration that contains zizsz3.
Instead of resolving these ambiguities in a formal way, we
will restrict our consideration to configurations that are
unambiguous.

The evolution of the self-similar cellular automaton
A is governed by the following block transformations:

1. Pulse moves downwards. Set

3 (g,a) = < (q.a); )
ab»—»a?; (5)
Jda—<aa (6)
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Symbol
State 0 1 X Y B
q0 (q17X7 R) 7 7 (q37KR) 7
q1 (q17 0, R) (q27 Y7 L) T (q17 Y7 R) T
q2 (q2707L) T (q07X7R) (q27)/7L) T
q3 — — — (¢3,Y,R) (qa,B,R)
g4 - - — — -

Fig. 3. The function .

If 6(q,a) = (p,c, R) set

b (g, a) — b{q,a); (7)
(g,a) b c (p,b); (8)
(@a) > — (g,a) > (9)

If 6(q,a) = (p,c, L) set

b (g,a) — (p,b) ¢; (10)
P — —
(g;a) b— (g, a) b; (11)
R
<q7a> > <q7a> > < (12)
Set
> abg (13)
>pU— B>y (14)
>d—< >. (15)
2. Pulse moves upwards. Set
a 4—< (16)
(g,0) 4—<{g,a); (17)
< 4~ 0O4. (18)

If to a certain cell no block transformation is applicable
the cell shall remain in its previous state. Furthermore, we
assume a short-circuit evaluation with regard to the quies-
cent state: f(O,0,7,7) = O, whereby the lower neighbor
cell is not accessed.

4.2 Example

We illustrate the working of Aj; by a simple example.
Let L be the formal language consisting of strings with
n 0’s, followed by n 1's: L = {0"1"n > 1}. A Tur-
ing machine that accepts this language is given by M =
({q07 q1,42, 93, Q4}a {07 1}3 {07 15 Xa Ya B}a 57 qo, Ba {q4}) [10]
with the transition function depicted in Figure 3. Note
that L is a context-free language, but M will serve for
demonstration purposes. The computation of M on input
01 is given below:

QQ01 F qul F QQXY F XqOY F XYQ3 F XYBQ4.
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Figure 4 depicts the computation of Ap; on the Turing
machine input 01. The first column of the table specifies
the time in binary base. Aj; performs 4 complete pulse
zigzags and enters a final configuration in the fifth one
after the Turing machine simulation has reached the final
state q4. Figure 5 depicts the space-time diagram of the
computation. It shows the position of the left and right
delimiter (gray) and the position of the pulse (black).

4.3 Proof

We split the proof that Ajs is a hypercomputer into sev-
eral steps. We first show that the block transformations
are well-defined and the pulse is preserved during evo-
lution. Afterwards we will prove that A, simulates M
correctly and we will show that Aj; represents an accel-
erating Turing machine.

— - T

Let D ={<d,>p,>q a,{g a)} be the set of elements
that represent the downgoing pulse, U = {«} be the sin-
gleton that contains the upgoing pulse, P = D U U, and
R = Z\P the remaining elements. The following lemma
states that the block transformations are unambiguous for
the set of configurations we consider and that the pulse is
preserved during evolution.

Lemma 1. If the finite configuration C contains exactly
one element of P then the application of the block trans-
formations 4-18 is unambiguous and at most one block
transformation is applicable. If a configuration C' with
C ta, C exists, then C' contains exactly one element
of P as well.

Proof. Note that the domains of all block transformations
are pairwise disjoint. This ensures that for all pairs z; 29
in Z x Z at most one block transformation is applicable.
Block transformations 4-14 are all subsets or elements of
(D x R) x (R x D), block transformation 15 is element of
(D x R) x (U x R), block transformations 16 and 17 are
subsets of (RxU) x (U x R), and finally block transforma-
tion 18 is element of (RxU) x (Rx D). Since the domain is
either a subset of D x R or Rx U the block transformations
are unambiguous if C' contains at most one element of P.
A configuration ¢’ with C' F4,, C' must be the result of
the application of exactly one block transformation. Since
each block transformation preserves the pulse, C’ contains
one pulse if and only if C' contains one. Q.E.D.

We introduce a mapping v that aims to decode a self-
similar cellular automaton configuration into a Turing ma-
chine configuration. Let C be a finite configuration. Then
~(C) is the string in (I" U Q)* that is formed of C' as fol-
lowing:

1. All elements in {7, «, 4,4, >, 5, > ¢} are omitted.
2. All elements of the form @ are replaced by a and all
—_

elements of the form (g, a) or (g, a) are replaced by the
two symbols ¢ and a.
3. All other elements of the form a are added as they are.
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0.000000002
1.000000002
1.100000002

1.110000002

1.111000002
10.000000002
10.100000002
11.000000002
11.100000002
11.110000002
11.111000002
11.111100002

100.000000002

100.010000002
100.100000002
100.110000002
100.111000002
100.111100002
100.111110002
100.111111002

101.000000002
101.000100002

101.001000002
101.010000002
101.011000002
101.011100002
101.011110002
101.011111002

101.011111102

101.01111111,

101.100000002
101.100001002
101.100010002
101.100100002
101.101000002
101.101100002
101.101110002
101.101111002

101.101111102

Fig. 4. A computation of Aas on input 01.

Fig. 5. Space-time diagram of the computation of Aas on input 01.
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4. Leading or trailing blanks of the resulting string are
omitted.

The following lemma states that Aj; correctly simu-
lates M.

Lemma 2. Let ¢y, ¢z be configurations of M. If c; F3; ca,
then there exist two finite configurations Cy, Cy of Apn
such that v(Cy) = ¢1, v(Ca) = ¢a, and Cy 4, Co-
Especially if the initial configuration Cy of Ay satisfies
v(Cy) = ¢1, then there exists a finite configuration Cy of
Apr, such that v(Cq) = ¢ and Cy 4, C2-

Proof. If ¢; has the form a;...a,q we consider with-
out loss of generality a;...a,qB. Therefore let ¢ =
ai...a;—1qa;...an. i <nori=mnand dp(q,a,) =L
we choose C; = Zal e @i—1(q, ai) a1 . can>. If i =n
and dp(q,a,) = R we insert an additional blank: C; =
Ha; ... an-1(q, an)Br>. In any case v(C}) = ¢; holds. We
show the correctness of the simulation by calculating a
gmplete zigzag of the pulse for the start configuration:
day...a;-1{(q,a;)a;i+1 .. .apt>. The number of the block
transformation that is applied, is written above the deriva-
tion symbol. We split the zigzag up into three phases.

1. Pulse moves down from the left delimiter to the left
neighbor cell of the simulated head.
For 7 > 1 we obtain

_ (©)
<aig .. .ai_1<q, ai>ai+1 oL ap> |_AM
. (%)
<ai ... ai_1<q, ai>ai+1 L apl> l_AM
. ORENG
<laiaz .. .ai_1<q, a,i>a,i+1 LoLap> l_AM C l_AM
—
<aj ... Cl,l'_1<q, ai>ai+1 e D>
(19)

If i = 1 the pulse piggybacked by the left delimiter g
is already in the left neighbor cell of the head and this
phase is omitted.

2. Downgoing pulse passes the head.
If in the beginning of the zigzag the head was to the
right of the left delimiter then

(4) e

G{g,ar)as...an>ba,, g aday. .. an>.  (20)

If 6p(q,a1) = L no further block transformation is
applicable and the configuration is final. The case
0p(g,a1) = R will be handled later on. We now con-
tinue the derivation 19. If §(¢, a;) = (p, b, L) then

(10)
<asj .. .ai_1<q, ai>ai+1 oL ap> |_AM

N
<a1...<p,ai_1>bai+1...an>.

If 6(q,a;) = (p,b, R) then

(7)
<asj .. .ai_1<q, ai>ai+1 oL ap> |_AM
—_
<daq...a;—1 <q, ai)ai_ﬂ el D (22)
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We distinguish two cases: i < nand i =n. If i <n
then

- (8)
<ai... ai_1<q, ai>ai+1 oL apl> l_AM

—
<Qag...a;—1b(p,air1)aive ... an > . (23)

If the next steps of M are moving the head again to the
right, block transformation 8 will repeatedly applied,
till the head changes its direction or till the head is
left of the right delimiter t>. If the Turing machine
M changes its direction before the right delimiter is
reached, we obtain

. (11)
<day...a;—1by.. .bj<7‘, ak>a;€+1 oL ap> |_AM

<1a1...ai_lbl...bj<r,ak)ak+1...anD (24)
or if the direction change happens just before the right
delimiter then

—  (12)
<day...a;—1by.. .bj<7“,an>> |_AM

<1a1...ai_1b1...bj<r,an) >g- (25)

If i = n or if the right-moving head hits the right
delimiter the derivation has the following form

N (9)
Qay...ap-1{q,an)>Fa,, <ai...an—1{q,an)>p
(14)
Fa, <ai...an—1{q,a,)B>4, (26)
which inserts a blank to the right of the simulated
head.

3. Downgoing pulse is reflected and moves up.

We proceed from configurations of the form
ey ... ¢i—1{p, ¢i)Cit1 - .. cxl>. Then
(5) (5)
<cq .. .Ci_1<p, Ci>Ci+1 Lo.Cpl> l_AM - l_AM
T
<cq .. .Ci_1<p, Ci>Ci+1 L. Cpl> l_AJW
(15)
<c1 ... Ci_1<p, Ci>Ci+1 . Cpl> 4 l_AM
(16) (16)
<]Cl...Ci_1<p,Ci>Ci+1 o Cp A D> |_AM |_AM
(17)
<cq .. .Ci_1<p, Ci> d4Cip1...Cp> |_AM
(16)  (16)

<cp...ci—1 d <p,Ci>Ci+1...Cn\> l_AM L F
(18)
<ldcy.. .ci_1<p,ci>cz-+1 oL Cp > |_AM

N
<cy.. .Ci_1<p, Ci>Ci+1 Lo Cp >y

An

(27)

which finishes the zigzag. Note that the continuation
of derivations 25 and 26 is handled by the later part
of derivation 27. We also remark that the zigzag has
shifted the whole configuration one cell downwards.

All block transformations except transformations 8 and 10
keep the v-value of the configuration unchanged. Block
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transformations 8 and 10 correctly simulate one step in

8)or(10
the calculation of the Turing machine M: if C' ( ')_AEVI : ',
Y(C) = ¢, and v(C') = ¢ then ¢ by . Let C] be the
resulting configuration of the zigzag. We conclude that
~v(C1) Fi; v(C1) holds. We have chosen C; in such a way
that at least one step of M is performed, if M does not
halt, either by block transformation 8 or 10. If M does
not halt the configuration after the zigzag is again of the
form <a1 < ai—1{(q,a;)a;t1 - .. a,>. The case i = n and
op(q,an) = R is excluded by derivation 26, which inserts
a blank to the right of the head, if dp(q,a,) = R. This
means that C] has the same form as C; and that any
subsequent zigzag will perform at least one step of M as
well if M does not halt.

In summary, we conclude that Aj; reaches after a
finite number of zigzags a configuration Cs such that
v(C3) = co. On the other hand, if M halts, Ay en-
ters a final configuration since derivations 21 or 23 are
not applicable anymore and the pulse cannot cross the
simulated head. Since we have chosen Cjy to be of the
same form as Cp in the beginning of the proof, the ad-
dendum of the lemma regarding the initial configuration
is true. Q.E.D.

Next, the time behavior of the self-similar cellular au-
tomaton Ajy; will be investigated.

Lemma 3. Let C = Zal e @i—1{(q, i)y - apD> be a
finite configuration of Ans that starts in cell k. If M does
not halt, the zigzag of the pulse takes 3 cycles of cell
k and Aypr is afterwards in a finite configuration C'
Dby b1 (p,bj)bjyy ... byt> that starts in cell k+ 1.

Proof. Without loss of generality, we assume that the fi-
nite configuration starts in cell 0. We follow the zigzag of
the pulse, thereby tracking all times, compare with Fig-
ures 4 and 5. The pulse reaches at time 1 cell 1, and at time
Zzl 0 277 cell 2. In general, the downgoing pulse reaches

cell 7 in time S7—) 2% At time 317 277 the cell n 4 2
changes to > 4 Wthh marks the reversal of direction of
the pulse. The next configuration change (>4 — < >)
occurs at Zn+1 4+ 27(+1) = 2. The pulse « reaches
cell n 4 1 in time 2 4+ 2=+ and in general cell r in
time 2 + 2 ". The final configuration change of the zigzag
(<« «— 0O <1) that marks also the beginning of a new pulse
zigzag occurs synchronously in cell 0 and cell 1 at time 3.
We remark that the overall time of the pulse zigzag re-
mains unchanged if the simulated head inserts a blank
between the two delimiters. Q.E.D.

Theorem 2. If M halts on w and Aps is initialized with
Co(w) then App enters a final configuration in a time less
than 6 cycles of cell 0, containing the result of the calcu-
lation between the left and right delimiter. If M does not
halt, Ay enters after 6 cycles of cell 0 the final configu-
ration that consists of an infinite string of the quiescent
element: OJ.

Proof. Apnr needs 3 cycles of cell 0 to perform the first
zigzag of the pulse. After the 3 cycles the configuration
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is shifted one cell downwards, starting now in cell 1. The
next zigzag takes 3 cycles of cell 1 which are 3/2 cycles
of cell 0, and so on. Each zigzags performs at least one
step of the Turing machine M, if M does not halt. We
conclude that if M halts, A enters a final configuration in
a time less than )~ 3/2" = 6 cycles of cell 0. If M does
not halt, the zigzag disappears in infinity after 6 cycles of
cell 0 leaving a trail of [’s behind. Q.E.D.

If M is a universal Turing machine, we immediately
obtain the following result, which proves that A,; is a
hypercomputer for certain Turing machines M.

Corollary 1. Let My be a universal Turing machine.
Then Apr, solves the halting problem for Turing ma-
chines.

Proof. Initialize Apr, with an encoded Turing machine M
and an input word w. Then A, enters a final configuration
with the result of M on w in less than 6 cycles of cell 0 if
and only if M halts. Q.E.D.

In the current form of Turing machine simulation the
operator has to scan a potentially unlimited number of
cells to determine whether M has halted or not, which
limits its practical value. If M has halted, we would like
to propagate at least this fact back to the upper cells. The
following obvious strategy fails in a subtle way. Add a rule
to Ay that whenever (g, a) has no next move, replaces it
by the new symbol H. Add the rule f(?,?,H,?) = H to
Ay that propagates H upwards to cell 0. The propagation
upwards is only possible if we change also the block trans-
formation 18 to < 44— <>< thereby introducing a new
symbol ¢ that is not subject of the short-circuit evalua-
tion. The last point, even if necessary, causes the strategy
to fail, since if Ap; does not halt, Ay is after 6 cycles in
the configuration ¢>° that leads to indeterministic behav-
ior of Ajs. This is in so far problematic, since we can not
be sure whether a state H in cell 0 is really the outcome
of a halting Turing machine or the result of indeterminis-
tic behavior. Instead of enhancing the self-similar cellular
automaton model, we will introduce in the next section
a computing model that is computational equivalent for
finite computations, but avoids indeterminism for infinite
computations.

5 Self-similar Petri nets

The evolution of a cellular automaton as well as the evo-
lution of a self-similar cellular automaton depends on an
extrinsic clock representing a global time that triggers
the state changes. Since a self-similar cellular automaton
cannot halt, a self-similar cellular automaton is forced to
perform a state change, even if no state with a causal
relationship to the previous one exists, leading to indeter-
ministic behavior, as described in the introduction. In this
section, we present a model based on Petri nets, the self-
similar Petri nets, with a close resemblance to self-similar
cellular automata. Even though Petri nets in general are
not deterministic, there exist subclasses that are. As will
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Fig. 6. Underlying graph of a self-similar Petri net.

be shown below, self-similar Petri nets are deterministic.
They are also capable of hypercomputing, but compared
to self-similar cellular automata their behavior differs in
the limit. Whereas a self-similar cellular automaton fea-
tures indeterministic behavior, the self-similar Petri net
halts.

5.1 Petri nets

Petri introduced Petri nets in the 1960s to study asyn-
chronous computing systems. They are now widely used
to describe and study information processing systems that
are characterized as being concurrent, asynchronous, dis-
tributed, parallel, nondeterministic, and/or stochastic. It
is interesting to note that very early, and clearly ahead of
its time, Petri investigated the connections between phys-
ical and computational processes, see, e.g., Ref. [38]. In
what follows, we give a brief introduction to Petri nets to
define the terminology. For a more comprehensive treat-
ment we refer to the literature; e.g., to Ref. [39].

Definition 11 (Petri net). A Petri net is a directed,
weighted, bipartite graph consisting of two kinds of nodes,
called places and transitions. The weight w(p,t) is the
weight of the arc from place p to transition ¢, w(t, p) is the
weight of the arc from transition ¢ to place p. A marking
assigns to place p a nonnegative integer k, we say that p
is marked with k tokens. If a place p is connected with
a transition ¢ by an arc that goes from p to ¢, p is an
input place of ¢, if the arc goes from ¢ to p, p is an output
place. A Petri net is changed according to the following
transition (firing) rule:

1. a transition ¢ may fire if each input place p of ¢ is
marked with at least w(p,t) tokens; and

2. a firing of an enabled transition ¢ removes w(p,t) to-
kens from each input place p of ¢, and adds w(¢,p)
tokens to each output place p of t.

Formally, a Petri net N is a tuple N = (P, T, F, W, M)
where P is the set of places, T is the set of transitions,
F C (PxT)U(T x P) is the set of arcs, W : F — N is the
weight function, and My : P — N is the initial marking.

In graphical representation, places are drawn as circles
and transitions as boxes. If a place is input place of more
than one transition, the Petri net becomes in general inde-
terministic, since a token in this place might enable more
than one transition, but only one can actually fire and
consume the token. The subclass of Petri nets given in the

following definition avoids these conflicts and is therefore
deterministic. In a standard Petri net, tokens are indistin-
guishable. If the Petri net model is extended so that the
tokens can hold values, the Petri net is called a colored
Petri net.

Definition 12 (Marked graph and colored Petri
net). A marked graph is a Petri Net such that each place
has exactly one input transition and exactly one output
transition. A colored Petri net is a Petri net where each
token has a value.

5.2 Self-similarity

It is well-known that cellular automata can be modeled
as colored Petri Nets. To do this, each cell of the cellu-
lar automaton is replaced by a transition and a place for
each neighbor. The neighbor transitions send their states
as token values to their output places, which are the input
places of the transition under consideration. The transi-
tion consumes the tokens, calculates the new state, and
send its state back to its neighbors. A similar construction
can be done for self-similar cellular automata, leading to
the class of self-similar Petri nets.

Definition 13 (Self-similar Petri net). A self-similar
Petri net is a colored Petri net with some extensions. A
self-similar Petri net has the underlying graph partitioned
into cells that is depicted in Figure 6. We denote the tran-
sition of cell n by t(n), the place to the left of the transition
by pi(n), the place to the right of the transition by p,(n)
and the central place, in the figure the place above the
transition, by p.(n). Let Z be a finite set, the state set,
q € Z be the quiescent state, and f be a (partial) func-
tion Z* x {0,1} — Z. The set V = Z U ({0,1} x Z) is
the value set of the tokens. Tokens are added to a place
and consumed from the place according to a first-in first-
out order. Initially, the self-similar Petri net starts with
a finite number of cells 0,1, ..., n, and is allowed to grow
to the right. The notation p < z defines the following ac-
tion: create a token with value z and add it to place p.
The firing rule for a transition in cell n of a self-similar
Petri net extends the firing rule of a standard Petri net in
the following way:

1. If the transition ¢(n) is enabled, the transition removes
token Tk; from place p;(n), token Tk, from p.(n) and
tokens Tky,1, Tkyo from p,(n). The value of token Tk;
shall be of the form (coupled, z;) in V = {0,1} x Z, the
other token values z., z,1 and z,.9 shall be in Z. If the
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Fig. 7. Token flow in a self-similar Petri net.

tokens do not conform, the behavior of the transition
is undefined.
2. The transition
coupled).
3. (Left boundary cell) If n = 0 then p;(0)
(—coupled, q), pe(0) « z, pi(1) « (0, 2), pi(1) «— (1, 2).
4. (Inner cell) If n > 0 and n is not the highest index,
then: p,(n — 1) — 2, pe(n) — 2, pi(n + 1) — (0,2),
pi(n+1) < (1,2).
5. (Right boundary cell) If n is the highest index then:
(a) (Quiescent state) If z = ¢ then p,.(n — 1) « g,
pe(n) < q, pr(n) < ¢, pr(n) < q
(b) (New cell allocation) If z # ¢ then a new cell n+ 1
is created and connected to cell n. Furthermore:
pr(n—1) — 2, pe(n) — 2, po(n) — g, pi(n+1) —
(07 Z)u pl(n+1) — (17 2)7 pC(n+1) —4q, pr(n+1) —
¢, pr(n+1) —q.
Formally, we denote the self-similar Petri net by a tuple
N =(Z,f).

calculates 2z = f(z1, 2, 2r1, 212,

A self-similar Petri net is a marked graph and therefore
deterministic. The initial markup is chosen in such a way
that initially only the rightmost transition is enabled.

Definition 14 (Initial markup). Let aga; ... a,, be an
input word in Z™*! and let N be a self-similar Petri net
with n cells, whereby n > m + 1. The initial markup of
the Petri net is as follows:

- pl(O) — (an)7 (pl(l) — (Ovai—l)a pl(l) — (17011'_1))
for 0 <@ <m+1; (p(i) — (0,q), pi(i) — (1,q)) for
1 >m+ 1

— pe(i) < a; for i <m, p.(i) « q for i > m;

— pr(i) — aj+1 for i < m, p.(i) «— ¢ for i > m, and
pr(n) < q.

Note that the place p,(n) is initialized with two tokens. We
identify the state of a cell with the value of its p.-token.
If p. is empty, because the transition is in the process of
firing, the state shall be the value of the last consumed
token of p..

Figure 7 depicts the token flow of a self-similar Petri
net consisting of 4 cells under the assumption that the
self-similar Petri net does not grow. Tokens that are cre-
ated and consumed by the same cell are not shown. The
numbers indicate whether the firing is uncoupled (0) or
coupled (1). The only transition that is enabled in the be-
gin is ¢(3), since p,(3) was initialized with 2 tokens. The
firing of ¢(3) bootstraps the self-similar Petri net by adding
a second token to p,-(2), thereby enabling ¢(2), and so on,
until all transitions have fired, and the token flow enters
periodic behavior.
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5.3 Comparison of self-similar cellular automata
and self-similar Petri nets

We now compare self-similar Petri nets with self-similar
cellular automata. We call a computation finite, if it in-
volves either only a finite number of state updates of a
self-similar cellular automaton, or a finite number of tran-
sition firings of a self-similar Petri net, respectively.

Lemma 4. For finite computations, a dynamically grow-
ing self-similar cellular automaton A = (Z, f) and a self-
sitmilar Petri net N = (Z, f) are computalionally equiv-
alent on a step-by-step basis if the start with the same
number of cells and the same initial configuration.

Proof. Let N be a self-similar Petri net which has n cells
initially. For the sake of the proof consider an enhanced
self-similar Petri net N’ that is able to timestamp its to-
ken. A token Tk of N’ does not hold only a value, but
also a time interval. We refer to the time interval of Tk
by Tk.t and to the value of Tk by Tk.v. We remark that
the timestamps serve only to compare the computations
of a self-similar cellular automaton and a self-similar Petri
net and do not imply any time behavior of the self-similar
Petri net. The firing rule of N’ works as for N, but has
an additional pre- and postprocessing step:

— (Preprocessing) Let Tk., Tk, Tky1, and Tk,2 be the
consumed token, where the alphabetical subscript de-
notes the input place and the numerical subscript the
order in which the tokens were consumed. Calculate
t = (Tk..t)—, where — is the inverse time operator
of «—. If Tkrl.t 75 t/ or Tkrg.t 7é t\ or Tkl.t 75 tT
the firing fails and the transition becomes permanently
disabled.

— (Postprocessing) For each created token Tk, set
Tk.t =t.

The initial marking must set the t¢-field, otherwise the first
transitions will fail. For the initial tokens in cell k, set
Tk;.t = 27%+11 for both tokens in place p;, Tkt =271,
and Tkq.t = 27711, Set Tkq.t = 27""1(1 + 1) for the
second token in p,.(n). The firings of cell k add tokens with
timestamps 27%1,27%(2+1),27%(3 + 1) ... to the output
place p.(k). If transition ¢(k) does not fail, the state func-
tion for the arguments ¢ = 27%1 and t = 27%(i + 1) is
well-defined: s(c,t) = z if cell k has produced or was ini-
tialized in place p, with a token Tk with Tk.t = t and
Tk.v = z. Let s(c,t) be the state function of the scale-
invariant cellular automaton A. Due to the initialization,
the two state functions are defined for the first n cells
and first time intervals 27¥1. Assume that the values of s
and s’ differ for some argument or that their domains are
different. Consider the first time interval ¢; where the dif-
ference occurs: s(c,t1) # s'(¢, t1), or exactly one of s(c, t1)
or s'(e,t1) is undefined. If there is more than one time
interval choose an arbitrary one of these. Since t; was
the first time interval where the state functions differ, we
know that s(cp,t11) = s'(ct,t11), s(e,tio) = s'(e,t1),
s(ctr ) = s'(c 1), and s(c,t1n) = s'(c,t1n ).
We handle the case that the values of the state functions
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are different or that s’ is undefined for (c,¢;) whereas s
is. The other case (s’ defined, but not s) can be handled
analogously. If ¢ = 27%1, we conclude that tokens with
timestamps t17, t1., t1_, t1~, were sent to cell k, and
no other tokens were sent afterwards to cell k, since the
timestamps are created in chronological order. Hence, the
precondition of the firing rule is satisfied and we conclude
that s(c,t1) = s'(c, t1), which contradicts our assumption.
The allocation of new cells introduces some technicalities,
but the overall strategy of going back in time and conclud-
ing that the conditions for a state change or cell allocation
were the same in both models works here also. We com-
plete the proof, by the simple observation that N and N’
perform the same computation. Q.E.D.

The proof can be simplified using the following more
abstract argumentation. A comparison of Figure 7 with
Figure 2 shows that each computation step has in both
models the same causal dependencies. Since both com-
puters use the same rule to calculate the value of a cell,
respectively the value of a token, we conclude that the
causal nets [40] of both computations are the same for
a finite computation, and therefore both computers yield
the same output, in case the computation is finite.

5.4 Timed self-similar Petri nets that hypercompute

A large number of different approaches to introducing time
concepts to Petri nets have been proposed since the first
extensions in the mid 1970s. We do not delve into the
depths of the different models, but instead, define a very
simple time schedule for the class of self-similar Petri nets.

Definition 15 (Timed self-similar Petri net). A
timed self-similar Petri net is a self-similar Petri net that
fires as soon as the transition is enabled and where a fir-
ing of an enabled transition t(k) takes the time 27%. In
the beginning of the firing, the tokens are removed from
the input places, and at the end of the firing the produced
tokes of the firing are simultaneously entered into the out-
put places.

This time model can be satisfied if the cells of the
timed self-similar Petri net are arranged as the cells of a
self-similar cellular automaton. Under the assumption of a
constant token speed, a firing time that is proportional to
the cell length, and an appropriate unit of time we yield
again cycle times of 27F.

We now come back to the simulation of Turing
machines and construct a hypercomputing timed self-
similar Petri net, analogous to the hypercomputing self-
similar cellular automaton in Section 4. Let M =
(Q,X,T,0,q0, B, F) be an arbitrary Turing machine. Let
Z be the state set that we used in the simulation of a
Turing machine by a self-similar cellular automaton, and
let f the local rule that is defined by the block trans-
formations 4-18, without the short-circuit evaluation. By
Lemma 4 we know that the timed self-similar Petri net
Ny = (Z, f) simulates M correctly for a finite number of
Turing machine steps. Hence, if M halts on input w, Ny,
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enters a final configuration in less than 6 cycles of cell 0.
We examine now the case that M does not halt. A pivotal
difference between a self-similar cellular automaton and a
self-similar Petri net is the ability of the latter one to halt
on a computation. This happens if all transitions of the
self-similar Petri net are disabled.

Lemma 5. Let M = (Q, X, I,6,q0, B, F) be an arbitrary
Turing machine and w an input word in X*. If M does
not halt on w, the timed self-similar Petri net Ny halts
on Co(w) after 6 cycles of cell 0.

Proof. As long as the number of cells is finite, the bound-
ary condition 5a of the firing rule adds by each firing two
tokens to the p,.-place of the rightmost cell that succes-
sively enable all other transitions as well. This holds no
longer for the infinite case. Let M be a Turing machine,
and w an input word, such that M does not halt on w.
We consider again the travel of the pulse zigzags down
to infinity for the timed self-similar Petri net Nj; with
initial configuration Cp(w), thereby tracking the marking
of the p,-places for times after the zigzag has passed by.
The first states of cell 0 are Z, <, <, and O, including
the initial one. The state [J is the result of the firing at
time 3, exhausting thereby the tokens in place p,(0). At
time 3 the left delimiter (Z) of the pulse zigzag is now in
cell 1. Cell 1 runs from time 3 on through the same state
— . .
sequence <, <, <, and [, thereby adding in summary 4
tokens to p,.(0). After creating the token with value OJ,
pr(1) is empty as well. We conclude that after the zigzag
has passed by a cell, the lower cell sends in summary 4
tokens to the upper cell, till the zigzag has left the lower
cell as well. For each cell k these four tokens in p, (k) en-
able two firings of cell k thereby adding two tokens to
pr(k —1). These two tokens of p,(k — 1) enable again one
firing of cell k — 1 thereby adding one token to p,(k — 2).
We conclude that each cell fires 3 times after the zigzag
has passed by and that the final marking of each p, is one.
Hence, no p,- has the necessary two tokens that enable the
transition, therefore all transitions are disabled and N,
halts at time 6. Q.E.D.

Since Njs halts for nonhalting Turing machines, there
are no longer any obstacles that prevent the construction
of the proposed propagation of the halting state back to
upper cells. We replace block transformation 4 with the
following two and add one new.

If 6(q,a) = (p,c, R) set

_ —_
(g, a) — < (g, a). (28)
If 6(q,a) = (p,c, L) or §(q,a) is not defined set
G g,a) — < H. (29)
If 6(g,a) is not defined set
—
b {q,a) — b H. (30)

The following definition propagates the state H up to
cell O:

f(2,7,H,7) =H. (31)
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We denote the resulting timed self-similar Petri net by
N . The following theorem makes use of the apparently
paradoxical fact, that N, halts if and only if the simu-
lated Turing machine does not halt.

Theorem 3. Let My be a universal Turing machine.
Then N g, solves the halting problem for Turing ma-
chines.

Proof. Consider a Turing machine M and an input word
w. Initialize Nz, with Co((M,w)) where (M,w) is the
encoding of M and w. If M does not halt on w, Ny,
halts at time 6 by Lemma 5. If M halts on w, then one
cell of Ny, enters the state H by block transformation 29
or 30 according to Theorem 2 and Lemma 4 and taking
the changes in f into account. The mapping 31 propagates
H up to cell 0. An easy calculation shows that cell 0 is in
state H, in time 7 or less. Q.E.D.

We have proven that Ny, is indeed a hypercom-
puter without the deficiencies of the scale-invariant cel-
lular automaton-based hypercomputer. We end this sec-
tion with two remarks. The timed self-similar Petri net
N sends a flag back to the upper cells, if the simulated
Turing machine halts. Strictly speaking, this is not nec-
essary, if the operator is able to recognize whether the
timed self-similar Petri net has halted or not. On the
other hand, a similar construction is essential, if the op-
erator is interested in the final tape content of the sim-
ulated Turing machine. Transferring the whole tape con-
tent of the simulated Turing machine upwards, could be
achieved by implementing a second pulse that performs an
upwards-moving zigzag. The construction is even simpler
as the described one, since the tape content of the Tur-
ing machine becomes static as soon as the Turing machine
halts.

The halting problem of Turing machines is not the
only problem that can be solved by self-similar cellular
automata, scale-invariant cellular automata, or timed self-
similar Petri nets, but is unsolvable for Turing machines.
A discussion of other problems unsolvable by Turing ma-
chines and of techniques to solve them within infinite com-
puting machines, can be found in Davies [19].

6 Summary

We have presented two new computing models that imple-
ment the potential infinite divisibility of physical config-
uration space. These models are purely information theo-
retic and do not take into account kinetic and other effects.
With these provisos, it is possible, at least in principle, to
use the potential infinite divisibility of space-time to per-
form hypercomputation, thereby extending the algorith-
mic domain to hitherto unsolvable decision problems.
Both models are composed of elementary computation
primitives. The two models are closely related but are very
different ontologically. A cellular automaton depends on
an eztrinsic time requiring an external clock and a rigid
synchronization of its computing cells, whereas a Petri net
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implements a causal relationship leading to an intrinsic
concept of time.

Scale-invariant cellular automata as well as self-similar
Petri nets are built in the same way from their primitive
building blocks. Each unit is recursively coupled with a
sized-down copy of itself, potentially leading to an infinite
sequence of ever decreasing units. Their close resemblance
leads to a step-by-step equivalence of finite computations,
yet their ontological difference yields different behaviors
for the case that the computation involves an infinite num-
ber of units: a scale-invariant cellular automaton exhibits
indeterministic behavior, whereas a self-similar Petri net
halts. Two supertasks which operate identically in the fi-
nite case but differ in their limit is a puzzling observa-
tion which might question our present understanding of
supertasks. This may be considered an analogy to a the-
orem [41] in recursive analysis about the existence of re-
cursive monotone bounded sequences of rational numbers
whose limit is not a computable number.

One striking feature of both models is their scale-
invariance. The computational behavior of these models is
therefore the first example for what might be called scale-
invariant or self-similar computing, which might be char-
acterized by the property that any computational space-
time pattern can be arbitrary squeezed to finer and finer
regions of space and time.

Although the basic definitions have been given, and
elementary properties of these new models have been ex-
plored, a great number of questions remain open for future
research. The construction of a hypercomputer was a first
demonstration of the extraordinary computational capa-
bilities of these models. Further investigations are neces-
sary to determine their limits, and to relate them with the
emerging field of hypercomputation [21-23,27,31,42,43].
Another line of research would be the investigation of their
phenomenological properties, analogous to the statistical
mechanics of cellular automata [8,44].
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