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It is not enough to have no concept,
one must also be capable of expressirg it.

Karl Kraus, in Die Fackel 697, 60 (1925)

But no sooner do we depart from sense and instinct to foll@ight of a superior principle, to
reason, meditate, and reflect on the nature of things, budwestnd scruples spring up in our minds
concerning those things which before we seemed fully to celmnd. Prejudices and errors of sense
do from all parts discover themselves to our view; and, evmi@éng to correct these by reason, we
are insensibly drawn into uncouth paradoxes, difficultés] inconsistencies, which multiply and
grow upon us as we advance in speculation, till at lengthingawandered through many intricate
mazes, we find ourselves just where we were, or, which is weitsdown in a forlorn Scepticism

George Berkeleyin A Treatise Concerning the Principles of Human Knowledgd (37

. MOTIVATION

In what follows, the terntontextrefers to a maximal collection of co-measurable obsergble
“bundled together” to form a “quasi-classical mini-uniset within some “larger” nonclassical
structure. Similarly, the contexts of an observable arerofiefined as maximal collections of mu-
tually co-measurable (compatible) observables which arasured or at least could in principle
be measured alongside of this observable [1-4]. Quanturhaméxally, this amounts to a formal-
ization of contexts by Boolean subalgebras of Hilbert ¢ati[5, 6], or equivalently, to maximal
operators (e.g., Ref. [7, Sec. 11.10, p. 90], English tratish in Ref. [8, p. 173], Ref. [ 2],
Ref. [10, pp. 227,228], and Ref. [19 84]).

In classical physics, contexts are rather unrevealing) akaasical observables are in principle
co-measurable, and there is only a single context which csegthe entirety of observables.
Indeed, that two or more observables may not be co-measuriabl, operationally obtainable
simultaneously, and thus may belong to different, distouitexts, did not bother the classical
mind until around 1920. This situation has changed dramaifftiazvith the emergence of quantum
mechanics, and in particular with the discovery of completaity and value indefiniteness. Con-

texts are the building blocks of quantum logics; i.e., thstipgs of a continuity of contexts form

1 Es geniigt nicht, keinen Gedanken zu haben: man mufR ihn asdnieken kdnnen.



the Hilbert lattices.

We shall make use of algebraic formalizations, in particldgic. Quantum logic is about the
relations and operations among statements referring tquhatum world. As quantum physics
is an extension of classical physics, so is quantum logicnsion of classical logic. Classical
physics can be extended in many mindboggling, weird wayse {urestion as to why Nature
“prefers” the quantum mindboggling way over others appe#rst fascinating to the open mind.
Before understanding some of the issues, one has to revaasichl as well as quantum logic and
some of its doubles.

Logic will be expressed as algebra. That is an approach wtachbe formalized. Other
approaches, such as the widely held opportunistic belefdbmething is true because it is useful
might also be applicable (for instance in acrimonious dieg), though less formalized. Some of
the material presented here has already been publishedhelse[12], in particular the partition
logic part [13], or the section on quantum probabilities][14ere we emphasize the importance

of the notion ofcontext which may serve as a unifying principle for all of the logdiscussed.

II. CLASSICAL CONTEXTS

Logic is an ancient philosophical discipline. Its algebation started in the mid-nineteenth
century with Boole'sLaws of Thoughf15]. In what follows, Boole’s approach, in particular to

probability theory, is reviewed.

A. Boolean algebra

A Boolean algebras is a set endowed with two binary operationgcalled “and”) andv
(called “or”), as well as a unary operatiori * (called “complement” or “negation”). It also con-
tains two elements 1 (called “true”) and O (called “falsedjisfying associativity, commutativity,
the absorption law and distributivity. Every element hasigue complement.

A typical example of a Boolean algebra is set theory. Theatpsrs are identified with the set
theoretic intersection, union, and complement, respelgtivi he implication relation is identified

with the subset relation.



B. Classical contexts as classical logics

A classical Boolean algebra is the representation of alipts“propositions” or “knowables.”
Every knowable can be combined with every other one by thedsta logical operations “and”
and “or.” Operationally, all knowables are in principle kvable simultaneously. Stated differ-
ently: within the Boolean “universe,” the knowables are ahsistently co-knowable. In this
sense, classical contexts coincide with the collectionligb@ssible observables, which are ex-
pressed by Boolean algebras. Thus, classical contextsecaieibtified with the respective classi-

cal logics.

C. Classical probabilities

Classical probabilities and joint probabilities can beresented as points ofa@nvex polytope
spanned by all possible “extreme cases” of the classicaldaooalgebra; more formally: by all
two-valued measures on the Boolean algebra. Two-valuedunes, also called dispersionless
measures or valuations, acquire only the values “0” and ifftérpretable as falsity and truth,
respectively. If some events are independently measured,their joint probabilitypg- - - can be
expressed as the product of their individual probabilipes, .. ..

The associatedorrelation polytopg16—20] (see also Refs. [21-23]) is spanned by a convex
combination of vertices, which are vectors of the faimq, . .., pg, .. .), where the components are
the individual probabilities of independent events whigketon the values 0 and 1, together with
their joint probabilities, which are the products of theiindual probabilities. The polytope faces
impose “inside—outside” distinctions. The associated|iradities must be obeyed by all classical
probability distributions; they are bounds on classicain{) probabilities termedconditions of

possible experiencelly Boole [15, 24].

1. Two-event “1-1" case

Let us demonstrate the bounds on classical probabilitigedgimplest nontrivial example of

two propositions; e.g.,

E ="a particle detector aligned along directioa clicks,” and

F ="a particle detector aligned along directioh clicks.”



FIG. 1 Measurements @7, Ey, E3 on the “left,” andF, F,, F3 on the “right” hand side, along directiofs

E F EAF=E-F full facet inequality
1 0 0 0 1 pg=>0
2 0 1 0 2 p=>pq
3| 1 0 0 3 pP=>pq
4, 1 1 1 4 pg=>p+g-1

(a) (b)
TABLE | Construction of the correlation polytope for two es: (a) the four possible cases are represented
by the truth table, whose rows can be interpreted as threerdiional vectors forming the vertices of the
correlation polytope; (b) the resulting four faces of théypmpe are characterized by half-spaces which are

obtained by solving the hull problem. .

Consider also the joint proposition
E AF = “the two particle detectors aligned along directioasndb click.”

The notation “1-1" alludes to the experimental setup, inchiithe two events are registered by
detectors located at two “adjacent sites.” For multiplediion measurements, see Fig. 1.

There exist four possible cases, enumerated in Table I(&g cbrrelation polytope in this
case is formed by interpreting the rows as vectors in threealsional vector space. Four cases,
interpretable as truth assignments or two-valued meastoagspond to the four vectof8, 0,0),
(0,1,0), (1,0,0), and(1,1,1). The correlation polytope for the probabilitigs g and the joint
probabilitiespg of an occurrence dE, F, and bothE& F



pq

q
FIG. 2 The correlation polytope for two events. The vertiaes(0,0,0), (0,1,0), (1,0,0), and(1,1,1).

The four faces of the polytope are characterized by the @léms in Table I(b).

is spanned by the convex swp+ Kz + K3+ Kg = 1 of these four vectors, which thus are vertices of
the polytopek; can be interpreted as the normalized weight for evembccur. The configuration
is drawn in Figure 2.

By the Minkoswki-Weyl representation theorem (e.g, Reh, [R.29]), every convex polytope
has a dual (equivalent) description: either as the convéxoliits extreme points (vertices); or
as the intersection of a finite number of half-spaces. Suotigaare given by linear inequalities,
which are obtained from the set of vertices by solving theal@dhull problem The inequalities
coincide with Boole’s “conditions of possible experieric&he hull problem is algorithmically
solvable but computationally hard [26].

In the above example, the “conditions of possible expegéace given by the inequalities
enumerated in Table Ib). One of their consequences are Baumgbint occurrences of events.
Suppose, for example, that the probability of a click in degealigned along directioais 0.9, and
the probability of a click in the second detector alignechgldirectionb is 0.7. Then inequality
4 forces us to accept that the probability that both deteetgister clicks cannot be smaller than
0.9+ 0.7—1=0.6. If, for instance, somebody comes up with a joint probabdf 0.4, we would
know that this result is flawed, possibly by fundamental raea®ent errors, or by cheating, or by

(quantum) “magic.”



Ei1 E; ki k EiR EiR EoF EoR

110000 O O o0 O

210 001 0 0o o0 o0

1001 0 01 O 1 0 0
111 01 0 1 0 0 0
1201 0 1 1 1 1 0 0
1331 1 0 0 O 0 0 0
141 1 01 O 1 0 1
1551 110 1 0 1 0

1612 111 1 1 1 1

TABLE Il Construction of the correlation polytope for fouvents. The 16 possible cases are represented
by the truth table, whose rows can be interpreted as eighetional vectors forming the vertices of the

correlation polytope.
2. Four-event “2-2" case

A configuration discussed in quantum mechanics is one withdeents grouped into two equal
partsEy, E> andFy, F>. There are 2different cases of occurrence or nonoccurrence of these fou
events enumerated in Table Il.

By solving the hull problem, one obtains a set of conditiohpassible experience which
represent the bounds on classical probabilities enuntenafeable I1l. For historical reasons, the
bounds 17-18, 19-20, 21-22, and 23-24 are called the Cldizare inequalities [27, 28]. They
are equivalent (up to permutations pfq;), and are the only additional inequalities structurally

different from the two-event “1-1" case.



full facet inequality inequality fopy=p2=th = = %

1 pich >0 pich >0

2 p1g2 > 0 p1g2 > 0

3 p2g1 > 0 p2q1 > 0

4 P20z > 0 P20z > 0

5 P1> P11 1> p

6 PL> P10 3> P

7 g1 > P01 3> pith

8 th > P10 i1>pp

9 P2 > P2l 3> Pt

10 P2 > P20 3 > P22

11 02 > p201 3> pots

12 G2 > P10 3> Pl

13 P11 > p1+ai—1 p1cs >0

14 P12 > p1+02—1 p1 > 0

15 P20 > P2+ —1 p2q1 > 0

16 P20z > P2+ G2 —1 P2gz > 0

17) 0= p1O1+P1G2+ P20i — P2G2 — P1— 01 1> +Pa0a+ P02+ P201 — P202
18| 101+ P02+ P2di — P22 — P1— 01 > —1 Pl + Prdz2+ P20l — P20z > O
19| 0= p1Qu+ P12 — P20+ P202 —P1— G2 12> +pP1Qr+ piGz — P01 + P20z
20| p1Q1+ P10z — P20+ P02 —P1— 02> —1  P1Q1+ P10z — P01+ P2G2 > 0
21 02> p101 — P102 + P21+ P20z — P2 — O 1> p1g1 — P10z + P201 + P20z
22| p101— Pad2+ Poda+ P2l — P2— 1 > —1 P10 — PaGz+ P01 + P2z > 0
23 02> —pa01+ PG+ P21+ P20z — P2— G2 1> —Pads + P10z + P20 + P22
24| —p101+ P10z + P201 + P20z — P2— G2 > =1 —pada+ PGz + P2G1 — P22 > 0

TABLE Il Construction of the correlation polytope for foewvents. The 24 faces of the polytope spanned
by the vertices corresponding to the rows enumerated ineTbIThe bounds 17-18, 19-20, 21-22, and

23-24 are the Clauser-Horne inequalities.
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3. Six event “3-3" case

A similar calculation [20] for six eventg1, E, E3, F1,F, F3 depicted in Fig. 1 yields an ad-
ditional independent [29, 30] inequality for their prod#tas p1, p2, ps,di, 02, gz and their joint
probabilities of the type

P11 + P202 + P03 + P201 + P202 — P203 + P30z — P302 < p1+ 201 + O.

I11. QUANTUM CONTEXTS

Omniscience in a classical sense is no longer possible fantgm systems. Some of the
reasons are: (i) quantum complementarity and, algebhaiaakociated with it, the breakdown
of distributivity; (ii) the impossibility to consistentlgssign truth and falsity for all observables
simultaneously and, associated with it, the nonexistefidey@valued measures on even finite

subsets of Hilbert logics; and (iii) the alleged randomrads=ertain single outcomes.

A. Hilbert lattices as quantum logics

Quantum logic has been introduced by Garrett Birkhoff arfthdan Neumann [7, 31-34] in
the thirties. They organizedtivp-down starting from the Hilbert space formalism of quantum me-
chanics. Certain entities of Hilbert spaces are identifigd propositions, partial order relations
and lattice operations. These relations and operationdamnéfied with the logical implication re-
lation and operations such as “and,” “or,” and the negafidrereby, as we shall see, the resulting
logical structures are “nonclassical,” in particular "hoolean.”

Kochen and Specker [35, 36] suggested to consider onlyartand operations among com-
patible, co-measurable observables; i.e., within Bootedralgebras, which will be identified with
blocks and contexts of Hilbert lattices. Nevertheless, samtheir theorems formally take into
account ensembles of contexts [9] for which a multitude obmpatible observables contribute.

If theoretical physics is assumed to be a faithful represent of our experience, such an
“empirical,” “operational” [37—-39] logic derives its jufitation by the phenomena themselves. In
this sense, one of the main justifications for quantum logjihé construction of the logical and

algebraic order of events based on empirical findings.
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generic lattice  order relation “meet” “join” “complement”
propositional  implication  disjunction conjunction neigat
calculus — “and” A “or” v “not” —
“classical” lattice  subset intersectiom uniony complement
of subsets
of a set
Hilbert subspace intersection of  closure of orthogonal
lattice relation subspaces linear subspace
C spand 1
lattice of EiEo=E; == E;+ E>;— E1E>; orthogonal
commuting projection
{noncommuting {r!imo(ElEz)”}
projection
operators

TABLE IV Comparison of the identifications of lattice relatis and operations for the lattices of subsets
of a set, for experimental propositional calculi, for Hitblattices, and for lattices of commuting projection

operators.

1. Definition

The dimensionality of the Hilbert space for a given quantystem depends on the number of
possible mutually exclusive outcomes. In the séim:ase, for example, there are two outcomes
“up” and “down,” associated with spin state measuremersgahrbitrary directions. Thus, the
dimensionality of Hilbert space needs to be two.

Then the following identifications can be made. Table I\&ligte identifications of relations of

operations of classical Boolean set-theoretic and quatiliivert lattice types.

e Any closed linear subspace of — or, equivalently, any ptapawoperator on — a Hilbert space

corresponds to an elementary proposition. The elementeug™“false” proposition can

in English be spelled out explicitly as
“The physical system has a property corresponding to trecasgsd closed linear

12



subspace.”

e The logical “and” operation is identified with the set tha@al intersection of two propositions
“N"; 1.e., with the intersection of two subspaces. It is deddtg the symbol A”. So, for

two propositiong andg and their associated closed linear subspaigsandiy,

mtp/\q - {X|X€ mtp, Xe mq}

e The logical “or” operation is identified with the closure bktlinear span®” of the subspaces
corresponding to the two propositions. It is denoted by gmel®l “v”. So, for two propo-

sitionsp andq and their associated closed linear subspaggsandiy,

Mpvg = Mp® Mg = {X| x=0y+Pz o,BeC, ye My, z€ Mq}.

The symbolp will used to indicate the closed linear subspace spanneddyéctors. That
IS,

ubv={w|w=oau+Bv, a,pcC,uve H}.

Notice that a vector of Hilbert space may be an elemerfd Mg without being an
element of eithe?t, or My, sinceMt, ® Mg includes all the vectors ity UM, as well

as all of their linear combinations (superpositions) arartlimit vectors.

e The logical “not”-operation, or “negation” or “compleméhnis identified with operation of
taking the orthogonal subspace.™ It is denoted by the symbol “”. In particular, for
a propositionp and its associated closed linear subspatg the negatiorp’ is associated
with
My ={x[ (xy) =0,y Mp},

where(x,y) denotes the scalar product>oéndy.

e The logical “implication” relation is identified with the stheoretical subset relatior”. It is
denoted by the symbols”. So, for two propositiong andq and their associated closed

linear subspace®t, andMy,

p— q<= Mp C Ny

13



e Atrivial statement which is always “true” is denoted by lisltepresented by the entire Hilbert
spacef). So,
M1 = 9.

e An absurd statement which is always “false” is denoted by 8.represented by the zero vector
0. So,
No=0.

2. Diagrammatical representation, blocks, complemetyari

Propositional structures are often represented by Hass&eaeechie diagrams. RAasse di-
agramis a convenient representation of the logical implicataswell as of the “and” and “or”
operations among propositions. Points " represent propositions. Propositions which are im-
plied by other ones are drawn higher than the other ones. Tejopitions are connected by a
line if one implies the other. Atoms are propositions whicbver” the least element 0; i.e., they
lie “just above” 0 in a Hasse diagram of the partial order.

A much more compact representation of the propositionalbas can be given in terms of its
Greechie diagranj40]. In this representation, the emphasis is on Booleamlgebras. Points
“ o ” represent the atoms. If they belong to the same Booleangeltna, they are connected by
edges or smooth curves. The collection of all atoms and eleieelonging to the same Boolean
subalgebra is calledlock i.e., every block represents a Boolean subalgebra withiordooolean

structure. The blocks can be joined or pasted together svil

e The tautologies of all blocks are identified.
e The absurdities of all blocks are identified.
e |dentical elements in different blocks are identified.

e The logical and algebraic structures of all blocks remaiadh

This construction is often referred to jpastingconstruction. If the blocks are only pasted together
at the tautology and the absurdity, one calls the resultgglahorizontal sum

Every single block represents some “maximal collectionefreeasurable observables” which
will be identified with some quantuontext Hilbert lattices can be thought of as the pasting of a

continuity of such blocks or contexts.
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Note that whereas all propositions within a given block anteat are co-measurable; proposi-
tions belonging to different blocks are not. This latteitéea is an expression of complementarity.
Thus from a strictly operational point of view, it makes noseto speak of the “real physical ex-
istence” of different contexts, as knowledge of a singleéerimakes impossible the measurement
of all the other ones.

Einstein-Podolski-Rosen (EPR) type arguments [41] uigjza configuration sketched in Fig. 1
claim to be able to infer two different contexts counterfiatiy. One context is measured on one
side of the setup, the other context on the other side of it.tH&yuniqueness property [6, 42]
of certain two-particle states, knowledge of a property ¢ particle entails the certainty that,
if this property were measured on the other particle as wed,outcome of the measurement
would be a unique function of the outcome of the measuremenibmed. This makes possible
the measurement of one context, as well as the simultaneaunderfactual inference of another,
mutual exclusive, context. Because, one could argue, @thone has actually measured on one
side a different, incompatible context compared to the extnineasured on the other side, if on
both sides the same contexbuld be measuredhe outcomes on both sidesuld be uniquely
correlated Hence measurement of one context per side is sufficienthéooutcome could be
counterfactually inferred on the other side.

As problematic as counterfactual physical reasoning magapfrom an operational point of
view even for a two particle state, the simultaneous “cadattual inference” of three or more
blocks or contexts fails because of the missing uniquenegeepy [42] of quantum states.

As a first example, we shall paste together observables aimeone-half systems. We have
associated a propositional system

L(a) = {0,E,E’, 1},

corresponding to the outcomes of a measurement of the sgesstlong some arbitrary direction
a. If the spin states would be measured along a differentahitection, say # +a, an identical
propositional system

L(b) = {O,F,F’ 1}

would have resulted, with the propositiois and F explicitly expressed before. The two-
dimensional Hilbert space representation of this configomas depicted in Figure 3.
L(a) andL(b) can be joined by pasting them together. In particular, watifletheir tautolo-

gies and absurdities; i.e., 0 and 1. All the other propassticemain distinct. We then obtain a

15
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FIG. 3 Two-dimensional configuration of spiffA state measurements along two directiarsdb.

1=EVE =

0=1
() (b)

FIG. 4 (a) Hasse diagram of the “Chinese lantern” form olgt@iby the pasting of two spin one-half propo-
sitional systemd (x) andL(X) which are nonco-measurable. The resulting logical strecisia modular
orthocomplemented lattice(x) & L(X) = MO,. The blocks (without (1) are indicated by dashed boxes.

(b) Greechie diagram of the configuration depicted in (a).

propositional structure
L(a) L(b) =MO;

whose Hasse diagram is of the “Chinese lantern” form andasvdrn Figure 4(a). The corre-
sponding Greechie diagram is drawn in Figure 4(b). Here! ®estands fororthocomplementa-
tion, expressing the fact that for every element there exists gnogonal complement. The term
“M” stands formodularity; i.e., for allx — b, X\ (aAb) = (x\Va) Ab. The subscript “2” stands for
the pasting of two Boolean subalgebras Qince all possible directiorsse R3 form a continuum,
the Hilbert lattice is a continuum of pastings of subalgslofthe formL(a).

The propositional system obtained is not a classical Boxddgebra, since the distributive laws

are not satisfied; i.e.,

FV(EAE) 2 (FVE)A(FVE)
Fvo <= 1n1
F £ 1,

16



FA(EVE) 2 (FAE)V(FAE)
FAl 2 0voO
F ” 0.

Notice that the expressions can be easily evaluated by tistnglasse diagram 4(a): For any
a,b, avbis just the least element which is connectedalandb; aA b is just the highest element

connected ta andb. Intermediates which are not connected to amdb do not count. Thatis,

/a\Vb 'a\/b
a b aAb

aVbis called a least upper bound@findb. aA b is called a greatest lower bounda&ndb.

MOz is a specific example of an algebraic structure which is dallattice. Any two elements
of a lattice have a least upper and a greatest lower bourghgag the commutative, associative
and absorption laws.

Nondistributivity is the algebraic expression of noncieakty, but what is the algebraic rea-
son for nondistributivity? It is, heuristically speakinggarcity, the lack of necessary algebraic
elements to “fill up” all propositions necessary to obtaie @md the same result in both ways as

expressed by the distributive law.

B. Quantum contexts as blocks

All that is operationally knowable for a given quantizedtsys is asingle blockrepresenting
co-measurable observables. Thus, single blocks or, irhanderminology, maximal Boolean
subalgebras of Hilbert lattices, will be identified with qixam contexts. As Hilbert lattices are
pastings of a continuity of blocks or contexts, contextstaesbuilding blocks of quantum logics.

A quantum context can equivalently be formalized by a sifigbendegenerate) “maximal” self-
adjoint operatoCC, such that all commuting, compatible co-measurable olbbézs are functions
thereof. (e.g., Ref. [7], Sec. 11.10, p. 90, English tratislap. 173; Ref. [9],5 2; Ref. [10],
pp. 227,228; Ref. [11]§ 84). Note that mutually commuting opators have identicatwiae
orthogonal sets of eigenvectors (forming an orthonormsid)avhich correspond to pairwise or-
thogonal projectors adding up to unity. The spectral deasitipns of the mutually commuting
opators thus contain sums of identical pairwise orthogpngkectors.

Thus the “maximal” self-adjoint operat@ has a spectral decomposition into some complete

set of orthogonal projectors; which correspond to elementary “yes”“no” propositionstine

17



Von Neumann-Birkhoff type sense [7, 31]. That@&= S, cGE; with mutually differentc; and

s ,E =1 In ndimensions, contexts can be viewedrapods spanned by the orthogonal
vectors corresponding to the project@s Ey, - - -, Ey. As there exist many such representations
with many different sets of coefficients, “maximal” operator are not unique.

An observable belonging to two or more contexts is cdlilekl observable Contexts can thus
be depicted by Greechie diagrams [40], consistingahtswhich symbolize observables (rep-
resentable by the spans of vectorswdimensional Hilbert space). Anypoints belonging to a
context; i.e., to a maximal set of co-measurable obsersgdbépresentable as some orthonormal
basis ofn-dimensional Hilbert space), are connectedshyooth curvesTwo smooth curves may
be crossing in commolink observablesin three dimensions, smooth curves and the associated
points stand for tripods. Still another compact representas in terms of Tkadlec diagrams [43],
in which points represent complete tripods and smooth euegresent single legs interconnecting
them.

In two dimensional Hilbert space, interlinked contexts dbexist, since every context is fixed
by the assumption of one property. The entire context isthustproperty, together with its nega-
tion, which corresponds to the orthogonal ray (which spaoseadimensional subspace) or pro-
jection associated with the ray corresponding to the ptgper

The simplest nontrivial configuration of interlinked coxtieexists in three-dimensional Hilbert
space. Consider an arrangement of five observakl8s C, D, K with two systems of operators
{A,B,C} and{D,K,A}, the contexts, which are interconnectedAyWithin a context, the op-
erators commute and the associated observables are cosadgas For two different contexts,
operators outside the link operators do not commiés a link observable. This propositional
structure (also known ds o) can be represented in three-dimensional Hilbert spacedyripods
with a single common leg. Fig. 5 depicts this configuratiothiree-dimensional real vector space,
as well as in the associated Greechie and Tkadlec diagramesofderator8,C, A andD,K, A can
be identified with the projectors corresponding to the twedsa

Bsc a = {(1,0,07,(0,1,07,(0,0,1)"},

Bo_k_a = {(cosp,sing,0), (—sind,cosp,0),(0,0,1)7},
(the superscriptT” indicates transposition). Their matrix representati®thie dyadic product of
every vector with itself.

Physically, the union of contex{8,C, A} and{D, K, A} interlinked alongA does not have any

direct operational meaning; only a single context can besored along a single quantum at a
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(@) (b) (c)
FIG. 5 Three equivalent representations of the same geigngetrfiguration: (a) Two tripods with a com-
mon leg; (b) Greechie (orthogonality) diagram: points dtéor individual basis vectors, and orthogonal
tripods are drawn as smooth curves; (c) Tkadlec diagrammtgoepresent complete tripods and smooth

curves represent single legs interconnecting them.

time; the other being irretrievably lost if no reconstroctiof the original state is possible. Thus,
in a direct way, testing the value of observahlagainst different contexB,C A} and{D,K,A}
is metaphysical.

Itis, however, possible to counterfactually retrieve mfiation about the two different contexts
of a single quantum indirectly by considering a singletesté) = (1/v/3)(| +—) +| —+) —|00))
via the “explosion view” Einstein-Podolsky-Rosen type gfianent depicted in Fig. 1. Since the
state is form invariant with respect to variations of the sugament angle and at the same time
satisfies the uniqueness property [42], one may retrievdirdtecontext{B,C, A} from the first
quantum and the second contékt K, A} from the second quantum. (This is a standard procedure
in Bell type arguments with two spin one-half quanta.)

More tightly interlinked contexts such &\, B,C} — {C,D,E} — {E,F,A}, whose Greechie
diagram is a triangle with the edg&sC andE, or {A,B,C} — {C,D,E} — {E,F,G} — {G,H, A},
whose Greechie diagram is a quadrangle with the edg€s E and G, cannot be represented
in Hilbert space and thus have no realization in quantunckgirhe five context$A,B,C} —
{C,D,E}—{E,F,G}—{G,H,I}—{l,J,A} whose Greechie diagrams is a pentagon with the edges
A, C, E, G andl have realizations iiR3 [14].
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C. Probability theory
1. Kochen-Specker theorem

Quantum logics of Hilbert space dimension greater than texemot a single two-valued
state interpretable as consistent, overall truth assighidd]. This is the gist of the beautiful
construction of Kochen and Specker [9]. For similar the@esee Refs. [45-49]. As a result of
the nonexistence of two-valued states, the classicakglyab construct probabilities by a convex
combination of all two-valued states fails entirely.

One of the most compact and comprehensive versions of thieéfe8pecker proof by contra-
diction in three-dimensional Hilbert spaRé has been given by Peres [50]. (For other discussions,
see Refs. [4, 14, 50-57].) Peres’ version uses a 33-eleraeot knes without a two-valued state.

The direction vectors of these lines arise by all permutatiaf coordinates from
(0,0,1), (0,+£1,1), (0,+£1,v/2), and (+1,+1,v2).

These lines can be generated (by the “nor’-operation betweaorthogonal propositions) by the
three lines [14]
(1,0,0), (1,1,0), (vV2,1,1).

Note that as three arbitrary but mutually nonorthogonadigenerate a dense set of lines [58],
it can be expected that any such triple of lines (not just the explicitly mentioned) generates a
finite set of lines which does not allow a two-valued prokibiheasure.

The way it is defined, this set of lines is invariant under ricib@anges (permutations) of the
X1, X2 andxs axes, and under a reversal of the direction of each of thesse dkis symmetry prop-
erty allows us to assign the probability measure 1 to sombefdys without loss of generality.
Assignment of probability measure 0 to these rays would hevatgnt to renaming the axes, or
reversing one of the axes.

The Greechie diagram of the Peres configuration is given gurei 6 [14]. For simplicity,
24 points which belong to exactly one edge are omitted. Tledioates should be read as fol-
lows: 1 — —1 and 2— v/2; e.g., 112 denotes Sfi, —1,v/2). Concentric circles indicate the (non
orthogonal) generators mentioned above.

Let us prove that there is no two-valued probability meagide 59]. Due to the symmetry

of the problem, we can choose a particular coordinate axis tat, without loss of generality,
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FIG. 6 Greechie diagram of a finite subset of the continuuml@éks or contexts embeddable in three-

dimensional real Hilbert space without a two-valued praitgbmeasure [14, Figure 9].

P(100) = 1. Furthermore, we may assume (case 1) B{atl) = 1. It immediately follows that
P(001) = P(010) = P(102) = P(120) = 0. A second glance shows tha¢201) = 1, P(112) =
P(112) =0.

Let us now suppose (case 1a) tR4201) = 1. Then we obtaifP(112) = P(112) = 0. We are
forced to accepP(110) = P(110) = 1 — a contradiction, sincél10) and(110) are orthogonal to
each other and lie on one edge.

Hence we have to assume (case 1b) B{@01) = 0. This gives immediatel?(102) = 1 and
P(211) = 0. SinceP(011) = 0, we obtairP(211) = 1 and thu$>(120) = 0. This require$(210) =

21



1 and therefor@(121) = P(121) = 0. Observe thalP(210) = 1, and thu(121) = P(121) = 0.

In the following step, we notice th&(101) = P(101) = 1 — a contradiction, sincél01) and
(101) are orthogonal to each other and lie on one edge.

Thus we are forced to assume (case 2) B@11) = 1. There is no third alternative, since
P(011) = 0 due to the orthogonality witfil00). Now we can repeat the argument for case 1 in its
mirrored form.

The most compact way of deriving the Kochen-Specker theaneiour dimensions has been

given by Cabello [60, 61]. It is depicted in Fig. 7.

2. Gleason’s derivation of the Born rule

In view of the nonexistence of classical two-valued stateswen finite superstructures of
blocks or contexts associated with quantized systems, auld still resort to classicalityvithin
blocks or contexts. According to Gleason’s theorem, thiexactly the route, thévia regia,” to
the quantum probabilities, in particular to the Born rule.

According to theBorn rule, the expectation valu@) of an observabld@ is the trace opA; i.e.,

(A) =tr(pA). In particular, ifAis a projectolE corresponding to an elementary yes-no proposition
“the system has property Qthen(E) = tr(pE) corresponds to the probability of that propeQy

if the system is in state. The equationg? = p and t(p?) = 1 are only valid for pure states,
becaus® is not an projector and thus idempotent for mixed states.

It is still possible to ascribe a certain degree of clasgicababilistic behaviour to a quantum
logic by considering its block superstructure. Due to tlBmolean algebra, blocks are “classical
mini-universes.” It is one of the mindboggling features akgtum logic that it can be decom-
posed into a pasting of blocks. Conversely, by a proper gement of “classical mini-universes,”
guantum Hilbert logics can be obtained. This theme is usedamtum probability theory, in par-
ticular by the Gleason and the Kochen-Specker theoremhidisénse, Gleason’s theorem can be
understood as the functional analytic generalization efganeration of all classical probability
distributions by a convex sum of the extreme cases.

Gleason’s theorem [55, 62—66] is a derivation of the Bore fudm fundamental assumptions
about quantum probabilities, guided by the quasi—claksiea, Boolean, sub-parts of quantum
theory. Essentially, the main assumption required for &la& theorem is thawithin blocks

or contexts, the quantum probabilities behave as clasgrodabilities; in particular the sum of
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(@) (b)

FIG. 7 Greechie diagram of a finite subset of the continuumlaéks or contexts embeddable in four-

dimensional real Hilbert space without a two-valued prdiigbmeasure [60, 61]. The proof of the

Kochen-Specker theorem uses nine tightly interconnectedegtsa = {A,B,C,D}, b = {D.E,F,G},
,d={J,K,L,M}, , f ={PQ,RA}, , h={C,E,L,N},

I = {F,H,0,0Q} consisting of the 18 projectors associated with the one isineal subspaces spanned by

A=(0,0,1,—1),B=(1,-1,0,0),C=(1,1,—-1,-1),D=(1,1,1,1), E=(1,—1,1,—1), F = (1,0,—-1,0),

G =(0,1,0,—-1), H = (1,0,1,0), | = (1,1,-1,1), J = (-1,1,1,1), K = (1,1,1,-1), L = (1,0,0,1),

M = (0,1,—1,0), N = (0,1,1,0), O = (0,0,0,1), P = (1,0,0,0), Q = (0,1,0,0), R= (0,0,1,1). (a)

Greechie diagram representing atoms by points, and canibgxtnaximal smooth, unbroken curves. (b)

Dual Tkadlec diagram representing contexts by filled poimtsl interconnected contexts are connected by

lines. (Duality means that points represent blocks and malxsmooth curves represent atoms.) Every

observable proposition occurs in exactly two contexts. sTha an enumeration of the four observable

propositions of each of the nine contexts, there appeare smbvennumber of true propositions. Yet, as

there is an odd number of contexts, there should bedamumber (actually nine) of true propositions.

probabilities over a complete set of mutually exclusivergsedd up to unity. With these quasi—
classical provisos, Gleason proved that there is no aligengp the Born rule for Hilbert spaces

of dimension greater than two.
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D. Quantum violations of classical probability bounds

Due to the different form of quantum correlations, whichnfiaily is a consequence of the dif-
ferent way of defining quantum probabilities, the constsaom classical probabilities are violated
by quantum probabilities. Quantitatively, this can be stigated [67] by substituting the classical

probabilities by the quantum ones; i.e.,

pr — q(B) =3[2+0(8)| Iy,
ps — 03(6) =l2® 3 [I2+0(6)],
pij — Gij(8,8") =3[+ 0(8)]® 3 I+ 0(8)],

) cosf sind _ . ,
with 0(0) = , where@ is the relative measurement angle in tke-plane, and

sin@ —cosf
the two particles propagate along §raxis, as depicted in Fig. 1.

The quantum transformation associated with the Clausenédmequality for the 2—-2 case is

given by

O22(a,B,v,0) = tr3(a,y) +q14(a,d) + 023(B, ) — G24(B,d) — ax(a) — as(y)
= 3[2+0(a)]@ 3 [I2+0(y)] + 3 [I2+0(a)] @ 3 [I2 +0(3)]
+3[l2+0(B)] @3 [I2+0(y)] - 3 [I2+0(B)] ® 5 [[2+0(3)]

—3 2+ o(a)] @l — @3 [I2+0(y)],

whereaq, [3, y, d denote the measurement angles lying inxheplane:a andf for one particley

andd for the other one. The eigenvalues are

A1234(0,B,Y,8) = %(i v/ 1£sin(a —B)sinly— &) — 1)

yielding the maximum bound|O2;|| = max—-1234A;. Note that for the particular choice
of parametersa = 0, = 20,y = 6,8 = 30 adopted in [68, 69], one obtaing,;| =
%{[(3—00549) /2]1/2—1} < % <\/§—1>, as compared to the classically allowed bound from

above 0.

E. Interpretations

The nonexistence of two-valued states on the set of quantopogitions (of greater than

two-dimensional Hilbert spaces) interpretable as truigamenents poses a great challenge for the
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interpretation of quantum logical propositions, relai@nd operations, as well as for quantum
mechanics in general. At stake is the meaning and physieakistence of observables which are
not co-measurable. Several interpretations have beegedpamong them contextuality, as well

as the abandonment of classical omniscience and realisusdisd below.

1. Contextuality

Contextualityabandons the context independence of measurement out¢bndegl] by sup-
posing that it is wrong to assume (cf. Ref. [1], Sec. 5) thatr#sult of an observation is indepen-

dent of what observables are measured alongside of it. Befigc. 5] states that the

“...result of an observation may reasonably depend not only@sttite of the system

... but also on the complete disposition of the apparatus.”
Note also Bohr’s remarks [2] about

“the impossibility of any sharp separation between the hébreof atomic objects and
the interaction with the measuring instruments which s¢ovdefine the conditions

under which the phenomena appear”

Contextuality might be criticized as an attempt to maintaimiscience and omni-realism even
in view of a lack of consistently assignable truth values narqum propositions. Omniscience or

omni-realism is the belief that
“all observables exist even without being experienced byfante mind”
Contextuality supposes that an

“observable exists without being experienced by any finitedmbut it may have

different values, depending on its context.”

So far, despite some claims to have measured contextuiléye is no direct experimental
evidence. Some experimental findings inspired by Bell-ty@gualities [70-72], the Kochen-
Specker theorem [73, 74] as well as the Greenberger-Hoeilgxger theorem [75] measure
incompatible contexts one after another; i.e., temporsdlguentially, and not simultaneously.
Hence, different contexts can only be measured on diffgranicles. A more direct test of contex-
tuality might be an EPR configuration of two quanta in thr@eeahsional Hilbert space interlinked

in a single observable, as discussed above.

25



2. Abandonment of classical omniscience

As has been pointed out already, contextuality might be&ctaéd for its presumption of quan-
tum omniscience; in particular the supposition that a ptalssystem, at least in principle, is
capable of “carrying” all answers to any classically refaigle question. This is true classically,
since the classical context is the entirety of observaliBs.it need not be true for other types
of (finite) systems or agents. Take for example, a refrigerdf it is automated in a way to tell
you whether or not there is enough milk in it, it will be at a quete loss at answering a totally
different question, such as if there is enough oil in the ea@if your car. It is a matter of everday
experience that not all agents are prepared to give answatlsgerceivable questions.

Nevertheless, if one forces an agent to answer a questienntapable to answer, the agent
might throw some sort of “fair coin” — if it is capable of doirsgp — and present random answers.
This scenario of a context mismatch between preparatiomaasurement is the basis of quantum
random number generators [76] which serve as a kind of “qumamandom oracle” [77, 78]. It
should be kept in mind that randomness, at least algoritligily 9-81], does not come “for free,”
thus exhibiting an amazing capacity of single quanta to scttppndom outcomes. Alternatively,
the unpredictable, erratic outcomes might, in the contextsiation [82] scenario, be due to some
stochasticity originating from the interaction with a “nnascopic” measurement apparatus, and
the undefined.

One interpretation of the impossibility to operationalimere than a single context is the aban-
donment of classical omniscience: in this view, whereasghtbe meaningful theoretically and
formally to study the entirety of the context superstruefusnly a single context operationally
exists. Note that, in a similar way astrieving information from a quantized system, the only
informationcodableinto a quantized system is given by a single block or contéxthe block
containsn atoms corresponding to possible measurement outcomes, then the information con-
tent is anit [83—-85]. The information needs not be “located” at a mautar particle, as it can be
“distributed” over a multi—partite state. In this senses ttuantum system could be viewed as a
kind of (possibly nonlocalprogrammable integrated circuigsuch as dield programmable gate
array or anapplication specific integrated circuit.

Quantum observables make only sense when interpreted ast@&ofuof some context, formal-
ized by either some Boolean subalgebra or by the maximabtgreit is useless in this framework

to believe in the existence of a single isolated observadl®id of the context from which it is
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derived. In this holistic approach, isolated observabdgmeated from its missing contexts do not
exist.

Likwise, it is wrong to assume that all observables whicH@auprinciple (“potentially”) have
been measured, also co-exist, irrespective of whethertdheg have or could have been actually

measured. Realism in the sense of

“co-measurable entities sometimes exist without beingeegpced by any finite
mind” might still be assumed for aingle context, in particular the one in which

the system was prepared.

3. Subjective idealism

Still another option is subjective idealism, denying theiSeence” of observables which could
in principle (“potentially”) have been measured, but alijusave not been measured: in this view,

it is wrong to assume that [86]
“entities sometimes exist without being experienced byfiartg mind.”
Indeed, Bekeley states [87],

“For as to what is said of the absolute existence of unthigkinings without any
relation to their being perceived, that seems perfectiyntaliigible. Their esse [[to
be]] is percepi [[to be perceived]], nor is it possible theiauld have any existence

out of the minds or thinking things which perceive them.”

With this assumption, the Bell, Kochen-Specker and Greg@ndHorne-Zeilinger theorems and
similar have merely theoretical, formal relevance for ptysbecause they operate with unob-
servable physical “observables” and entities or with cetfattuals which are inferred rather than

measured.

IV. AUTOMATA AND GENERALIZED URN LOGIC

The following quasi—classical logics take up the notion ohtexts as blocks representing
Boolean subalgebras and the pastings among them. Theyase-glassical, because unlike quan-
tum logics they possess sufficiently many two-valued stiieslow embeddings into Boolean

algebras.
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A. Partition logic

The empirical logics (i.e., the propositional calculi) @asisted with the generalized urn models
suggested by Ron Wright [88, 89], and automaton logics (ARR) 90-93] are equivalent (cf.
Refs. [12, p.145] and [13]) and can be subsumed by partitgits. The logical equivalence of
automaton models with generalized urn models suggestshése logics are more general and
“robust” with respect to changes of the particular modehtbauld have been expected from the
particular instances of their first appearance.

Again the concept of context or block is very important heRartition logics are formed
by pasting together contexts or blocks based onpimitions of a set of statesThe contexts

themselves are derived from the input/output analysis péarments.

B. Generalized urn models

A generalized urn modell = (U,C,L,A) is characterized as follows. Consider an ensemble of
balls with black background color. Printed on these bakssame color symbols from a symbolic
alphabel. The colors are elements of a set of colGrsA particular ball type is associated with
a unique combination of mono-spectrally (no mixture of wamgth) colored symbols printed on
the black ball background. L&t be the set of ball types. We shall assume that every ball ctnta
just one single symbol per color. (Not all types of balls;,iret all color/symbol combinations,
may be present in the ensemble, though.)

Let |U| be the number of different types of ball€| be the number of different mono-spectral

colors,

L| be the number of different output symbols.

Consider the deterministic “output” or “lookup” functioh(u,c) =v, uc U, ceC, ve L,
which returns one symbol per ball type and color. One in&ggtion of this lookup function is
as follows. Consider a set ¢F| eyeglasses build from filters for th€| different colors. Let us
assume that these mono-spectral filters are “perfect” intttegy totally absorb light of all other
colors but a particular single one. In that way, every colam be associated with a particular
eyeglass and vice versa.

When a spectator looks at a particular ball through such aglags, the only operationally rec-
ognizable symbol will be the one in the particular color whis transmitted through the eyeglass.

All other colors are absorbed, and the symbols printed imthell appear black and therefore
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cannot be differentiated from the black background. Heheebiall appears to carry a different
“message” or symbol, depending on the color at which it isvei@. This kind of “complementar-
ity” has been used for a demonstration of quantum cryptdor§@4].

An empirical logic can be constructed as follows. Considher et of all ball types. With
respect to a particular colored eyeglass, this set digygidecays” or gets partitioned into those
ball types which can be separated by the particular colohefeyeglass. Every such partition
of ball types can then be identified with a Boolean algebrasghetoms are the elements of the
partition. A pasting of all of these Boolean algebras yig¢hldsempirical logic associated with the
particular urn model.

Consider, for the sake of demonstration, a single color enassociated partition of the set of
ball types (ball types within a given element of the partit@annot be differetiated by that color).
In the generalized urn model, an elemanf this partition is a set of ball types which corresponds

to an elementary proposition

“the ball drawn from the urn is of the type contained in a”

C. Automaton models

A (Mealy type) automatord = (S/1,0,d,A) is characterized by the set of stagdy the set
of input symbold, and by the set of output symbdls &(s,i) =S andA(s,i)=0,s,s €Si €l
ando € O represent the transition and the output functions, res@dgt The restriction to Mealy
automata is for convenience only.

In the analysis of atate identification problepa typical automaton experiment aims at an
operational determination of aimmknown initial stateby the input of some symbolic sequence
and the observation of the resulting output symbols. Evachsnput/output experiment results
in a state partition in the following way. Consider a par@&uautomaton. Every experiment
on such an automaton which tries to solve the initial statblem is characterized by a set of
input/output symbols as a result of the possible inputfeigpquences for this experiment. Every
such distinct set of input/output symbols is associatet wiset of initial automaton states which
would reproduce that sequence. This state set may contaéroomore states, depending on
the ability of the experiment to separate different iniaatomaton states. A partitioning of the
automaton states is obtained if one considers a single sguutence and the variety of all possible

output sequences (given a particular automaton). Statfetaditly: given a set of inputs, the set
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of initial automaton states “break down” into disjoint satssassociated with the possible output
sequences. (All elements of a subset yield the same outpghesame input.)

This partition can then be identified with a Boolean algelrih the elements of the parti-
tion interpreted as atoms. By pasting the Boolean algeldrieedfinest” partitions together one
obtains an empirical partition logic associated with theipalar automaton. (The converse con-
struction is also possible, but not unique; see below.)

For the sake of simplicity, we shall assume that every erpani just deals with a single in-
put/output combination. That is, the finest partitions @a&ched already after the first symbol.
This does not impose any restriction on the partition logiece given any particular automaton,
it is always possible to construct another automaton witicty the same partition logic as the
first one with the above property.

More explicitly, given any partition logic, it is always pgble to construct a corresponding
automaton with the following specification: associate vetlery element of the set of partitions a
single input symbol. Then take the partition with the highesnber of elements and associate a
single output symbol with any element of this partition. éfé are then sufficient output symbols
available for the other partitions as well.) Different fwhs require different input symbols; one
input symbol per partition. The output function can then bBreéd by associating a single output
symbol per element of the partition (associated with a paldr input symbol). Finally, choose a
transition function which completely looses the stateiinfation after only one transition; i.e., a
transition function which maps all automaton state intangl& one.

A typical proposition in the automaton model refers to aipart element containing automa-
ton states which cannot be distinguished by the analysiedtrings of input and output symbols;

i.e., it can be expressed by

“the automaton is initially in a state which is contained iti a

D. Contexts

In the generalized urn model represent everything that asviable by looking in only a sin-
gle color. For automata, this is equivalent to considerinly @ single string of input symbols.

Formally, this amounts to the identification of blocks witintexts, as in the quantum case.
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E. Proof of logical equivalence of automata and generalized urn models

From the definitions and constructions mentioned in theiptsvsections it is intuitively clear
that, with respect to the empirical logics, generalizedmodels and finite automata models are
equivalent. Every logic associated with a generalized uwdehcan be interpreted as an automaton
partition logic associated with some (Mealy) automatonu@ity an infinity thereof). Conversely,
any logic associated with some (Mealy) automaton can beprdgted as a logic associated with
some generalized urn model (an infinity thereof). We shalbpthese claims by explicit construc-
tion. Essentially, the lookup functioft and the output functioa will be identified. Again, the
restriction to Mealy automata is for convenience only. Toesiderations are robust with respect

to variations of finite input/output automata.

1. Direct construction of automaton models from generdliaen models

In order to define an APL associated with a Mealy automatea (S 1,0,d,A) from a gener-
alized urn model = (U,C,L,A),letuceU,ceC,vel,ands, s € Siel,oe O, and assume
Ul =18 [C] =]l

bijectionsts, t; andtp:

L| = |O|. The following identifications can be made with the help o th

ts(u) =s, tj(c) =i, to(v) =0,

o(s,i)=g forfixeds € Sand arbitranse S i €1,
Msi)=to (At H).4740)) ).

More generally, one could use equivalence classes insfeadigection. Since the input-output
behavior is equivalent and the automaton transition foncis trivially |L|-to-one, both entities

yield the same propositional calculus.

2. Direct construction of generalized urn models from awtton models

Conversely, consider an arbitrary Mealy automat#s (S,1,0,0,A) and its associated propo-
sitional calculus APL.

Just as before, associate with every single automatonstata ball typeu, associate with
every input symboi € | a unique colorc, and associate with every output symbat O a unique

symboly; i.e., againU| =19, |C| = |l|, |L| = |O|. The following identifications can be made with

31



the help of the bijectionsy, Tc andty:

w(9) =u, c(i) = ¢, 1.(0) =V, Alu,c) = T (A(15 (), 1c1(C)))-
A comparison yields

-1 -1 -1

3. Schemes using dispersion-free states

Another equivalence scheme uses the fact that both autarpattition logics and the logic
of generalized urn models have a separating (indeed, fetlptdispersion-free states. Stated
differently, given a finite atomic logic with a separating eéstates, then the enumeration of the
complete set of dispersion-free states enables the expdiostruction of generalized urn models
and automaton logics whose logic corresponds to the otigima

This can be achieved by “inverting” the set of two-valuedestaas follows. (The method is
probably best understood by considering the examples belost us start with an atomic logic

with a separating set of states.

(i) In the first step, every atom of this lattice is labeled byn® natural number, starting from
“1” to “ n”, wheren stands for the number of lattice atoms. The set of atoms istddrby
A={12...,n}.

(i) Then, all two-valued states of this lattice are labetahsecutively by natural numbers,
starting from ‘my” to “m,”, wherer stands for the number of two-valued states. The set of

states is denoted bW = {my, My, ..., m }.

(i) Now partitions are defined as follows. For every atonsedis created whose members are
the numbers or “labels” of the two-valued states which anee't or take on the value “1”
on this atom. More precisely, the elemepia) of the partition?; corresponding to some

atoma € A are defined by
pi(a) ={k|m(a)=1, ke M}.

The partitions are obtained by taking the unions ofpavhich belong to the same subal-

gebra®;. That the corresponding sets are indeed partitions followra the properties of
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two-valued states: two-valued states (are “true” or) takéhe value “1” on just one atom

per subalgebra and (“false” or) take on the value “0” on dilentatoms of this subalgebra.

(iv) Let there bet partitions labeled by “1” throught”. The partition logic is obtained by a
pasting of all partition®j, 1 < j <t.

(v) In the following step, a corresponding generalized uwdsl or automaton model is ob-

tained from the partition logic just constructed.

(a) A generalized urn model is obtained by the following ittfezations (see also [88, p.
271)).

e Take as many ball types as there are two-valued states; fypes of balls.
e Take as many colors as there are subalgebras or partitienscolors.

e Take as many symbols as there are elements in the partjtmwiifsthe maximal
number of elements; i.e., maxj<¢ |Pj| < n. To make the construction easier, we
may just take as many symbols as there are atomspsgmbols. (In some cases,
much less symbols will suffice). Label the symbolshyFinally, taker “generic”
balls with black background. Now associate with every measudifferent ball

type. (There are two-valued states, so there will bdall types.)

e Theith ball type is painted by colored symbols as follows: Find #toms for
which theith two-valued staten is 1. Then paint the symbol corresponding to
every such lattice atom on the ball, thereby choosing ther@dsociated with the
subalgebra or partition the atom belongs to. If the atomrmddo more than one
subalgebra, then paint the same symbol in as many coloress d@he partitions

or subalgebras the atom belongs to (one symbol per subalgebr
This completes the construction.

(b) A Mealy automaton is obtained by the following identificas (see also [93, pp. 154—
155]).

e Take as many automaton states as there are two-valued statgsautomaton

states.

e Take as many input symbols as there are subalgebras orqrestite. t symbols.
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e Take as many output symbols as there are elements in théqed) with the
maximal number of elements (plus one additional auxiliauypat symbol %”,
see below); i.e., maxj<t|Pj| <n+1.

e The output function is chosen to match the elements of the ptatition corre-
sponding to some input symbol. Alternatively, let the tatomag € A must be
an atom of the subalgebra corresponding to the inpdihen one may choose an

output function such as

aq if M(ag)

=1
A i) =
(Moll) * if mg(ag) =0

with 1 <k <r and 1< | <t. Here, the additional output symbaol™is needed.
e The transition function is—to-1 (e.g., byd(s,i) =1, 5,51 € S i € 1), i.e., after

one input the information about the initial state is comglietost.

This completes the construction.

4. Example 1. The automaton partition logig,L

In what follows we shall illustrate the above constructianith a couple of examples. First,

consider the generalized urn model

({ug,...,us}, {red },{1,...,5},A)

with A listed in Table V(a).

The associated Mealy automaton can be directly constriagedllows. Takds = to = id,
where id represents the identity function, and take=d) = 0 andt,( ) = 1, respectively.
Furthermore, fix a (five two)-to-one transition function b§(.,.) = 1. The transition and output
tables are listed in Table V(b). Both empirical structuredd/the same propositional loglc »
which is depicted in Fig. 5(b).

5. Example 2: The generalized urn logig,L

Let us start with an automaton whose transition and outplkesaare listed in Table V(b) and

indirectly construct a logically equivalent generalized model by using dispersion-free states.
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ball typgred
1 1 e} A
state
2 1 123485123485
3 2 01111111225
4 2 1111121343415
5 5

(@) (b)

TABLE V (a) Ball types in Wright's generalized urn model [8@F. also [12, p.143ff]). (b) Transition and

output table of an associated automaton model.

The first thing to do is to figure out all dispersion-free statéL 1, depicted in Fig. 8 [see also
Fig. 5(b)]. There are five of them, which might be written ircta form; i.e., in lexicographic

order:
al? a27 a37 a47 a5

m=(0 0 0 0 1),
m=(0 0 0 0 1),
m=(0 1, 0, 1, 0 ),
m=( 0 1, 1, 0, 0 ),
m=( 1 0O, 0 1, 0 ),
m=( 1 0, 1, 0, 0 ).

Now define the following generalized urn model as follows. tdNthat the associated logic
contains two subalgebras with the atomsay, as andag, a4, as, respectively, which are interlinked
atas. There are five two-valued measures corresponding to fivetygads. They are colored
according to the coloring rules listed in Table VI.

For every single atom of the logic, one could just write doWwaget of numbersf the two-
valued measures (in some enumeration of all two-valued mnegswhich are 1 on that atom. For
L12, with the contexts defined bfa;,ay,as} and {az,as,as} and the measures defined above,
this construction is depicted in Fig. 8. Then, one choosesglescolor per block, as well as the
symbols 12,3 indicating the atom. Now, generate as many ball types as @ne blocks, and

paint one of the symbols “1,” “2” or “3” in the color associdtith the elements of the partitions
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colors

C1 C2
ball type

“red”
1 * % ok % Dk % % *
2 % 2 % % x|k x x 4 %
3 ¥ 2 % % x|k % 3k %
4 1 % % x[*% % x 4 %
5 1% % % %% % 3 % %

TABLE VI Representation of the sign coloring schere”«” means no sign at all (black) for the corre-

a={4, 5}(1\ as={2,4}
ay = {2,3} ° az = {3,5}

a5 = {l}

sponding atom.

FIG. 8 Atoms are identified with the set of the numbers of twwbted measures which are 1 on that atom.

of the two-valued measures.

6. Example 3: generalized urn model of the Kochen-Speckey™mgic

Another, less simple example, is a logic which is already timaeed by Kochen and Specker
[9] (this is a subgraph of their1) whose automaton partition logic is depicted in Fig. 9. glti
called “bug” by Professor Specker [95] because of the smsitape with a bug.) There are 14
dispersion-free states which are listed in Table VII(a).e Bssociated generalized urn model is
listed in Table VII(b).

F. Probability theory

The probability theory of partition logics is based on a fdt of state, allowing to define prob-
abilities via the convex sum of those states. This is essfnthe same procedure as for classical

probabilities. In the same way, bounds on probabilitiestwafound through the computation of
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ag = {10,11,12 13,14} a = {2,6,7,8} as = {1,3,4,5,9}

(0, ® )
a ={4,5,6,7,8,9} as = {2,6,8,11,12,14}
3=
a; ={1,2,3} ¢ {1,4,510,11,12} a7 ={7,10,13}
ajp = {4,6,9,12,13 14} ag = {3,5,8,9,11,14}
©

a;n ={5,7,8,10,11} ajo={3,9,13 14} ag=1{1,2,4,6,12}

FIG. 9 Greechie diagram of automaton partition logic withroafuall set of dispersion-free measures.

(a) lattice atoms (b) colors

my and
dp a a3 a4 as as ay ag ag ajp A11 a1z a3 C2 Cqs C5 Cs C7

ball type

o O

o O
o O
o O
o O

10

o O
o O
o O
o O

11
12 001001001 O0 O0 1 33 1121

13 0010001001 0 1 Q33 3223

14 0010010101 0 1 Q33 2223

TABLE VIl (a) Dispersion-free states of the Kochen-Speckarg” logic with 14 dispersion-free states

and (b) the associated generalized urn model (all blankesritf’have been omitted).
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the faces of correlation polytopes.

Consider, as an example, a logic already discussed. Itsnatiom partition logic is depicted in
Fig. 9. The correlation polytope of this lattice consistd éivertices listed in Table VII, where the
14 rows indicate the vertices corresponding to the 14 dsspeifree states. The columns represent

the partitioning of the automaton states. The solution eftthll problem yields the equalities

1=P1+Po+Ps=Ps+Pio+Pi3,
1=Pi+P—Ps+Ps+Pr=—-Po+Ps— P+ P —Pio+ P2,
1=Pi+P—Ps+Ps—Ps+Pio+ Py,
O0=P1+Po—P1—Ps=—-P—Po+Ps—Ps+Ps+F.
The operational meaning & = P, is “the probability to find the automaton in stadg” The
above equations are equivalent to all probabilistic coowist on the contexts (subalgebrasy1
PL+Po+Ps=Ps+Ps+Ps=Ps+Ps+ P =P7+Ps+ Py =Py + Pio+ P11 = P4+ Pio+ Pis.

Let us now turn to the joint probability case. Notice thatnfatly it is possible to form a
statement such ag A a;3 (which would be true for measure number 1 and false othejysg
this is not operational on a single automaton, since no @xeet can decide such a proposition
on a single automaton. Nevertheless, if one considers gl&iatate” of two automata which are
in an unknown yet identical initial state, then an exprassioch as; A a;3 makes operational
sense if propertg; is measured on the first automaton and propaityon the second automaton.

Indeed, all joint probabilitieg; Aaj A ... a, make sense far-automaton singlets.

V. SUMMARY

Regarding contexts; i.e., the maximum collection of co-sueable observables, three differ-
ent cases have been discussed. The first, classical cabarasierized by omniscience. Within
the classical framework, all observables forrsirgglecontext, and everything that is in principle
knowable is also knowable simultaneously. Classical gooityacan be based upon the convex
combinations of all two-valued states. Fig. 10 depicts antimnhap” representing the use of con-
texts to build up logics and construct probabilities.

In the generalized urn or automaton cases, if one sticksetoules — that is, if one does not
view the object unfiltered or “screw the automaton box opendraniscience is impossible and a
guasi—classical sort of complementarity emerges: depgrath the color (or input string) chosen,

one obtains knowledge of a particular observable or cont&kbther contexts are hidden to the
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< context )
. guantized
classical
generalized urns
automata
block block
< Boolean algebra> <Boolean subalgebra Goolean subalget@

| (N Y Y
.................................. : logic
two-valued ¢ two-valued ‘ no two-valued
measures | . measures . Mmeasure
* probabilities logic * probabilities probabilities
logic
convex convex
sum sum Gl H
eason theore ;
- . continuous
finite pasting (Bornrule) pasting
of blocks of blocks

FIG. 10 “Mind map” representing the use of contexts to bupdagics and construct probabilities.

experimenter unable to lift the bounds of one color filter ve input sequence. A system science
issue is emerging here; namely the question of how intriabgervers perform inside of a given
system [93, 96]. The situation resembles quantum mechawas more if reversible systems are
considered; where an experiment can be “undone” only bysiimvg all the information gained
from previous experiments (without being able to copy thi€3e 98]. All incompatible blocks or
contexts are pasted together to form the partition logi@sEpasting still allow a sufficient num-
ber of two-valued states for the construction of probabgibased upon the convex combinations
thereof.

In the quantum case, the Hilbert lattices can formally beigfind of as pastings of a continuum
of blocks or contexts, but the mere assumption of the phlysidatence — albeit inaccessible to
an intrisic observer — of even a finite number of contextsdgel complete contradiction. In view
of this, one can adopt at least two interpretations: thatlmewable depends on its context; or
that more than one context for quantum systems has no opeshtneaning. The former view
has been mentioned by Bell (and also by Bohr to some degred)can be subsumed by the
term “contextuality.” To the author, contextuality is theest resort of a realism which is inclined

to maintain “a sort of” classical omniscience, even in vidwh@ Kochen-Specker and Bell-type
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theorems.

The latter viewpoint — that quantum systems do not encodeertt@n a single context —
abandons omniscience, but needs to cope with the fact thatdteed possible to measure different
contexts; even if there is a mismatch between the preparatid the measurement context. It has
been proposed that in these cases the measurement appaeaisktes” one context into the
other at the prize of randomizing the measurement resujt [B&s context translation principle
could be tested by changing the measurement apparatusy abilranslation.

All'in all, contexts seem to be an exciting subject. The notiway become more useful and
relevant, as progress is made towards a better compreheasfdive quantum world and its differ-

ences with respect to other classical and quasi—clasyistrss.
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