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We implemented the protocol of entanglement assisted orientation in the space pro-
posed by Brukner et al. (quant-ph/0509123). We used min-max principle to evaluate
the optimal entangled state and the optimal direction of polarization measurements
which violate the classical bound.
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1. Introduction

Bizarre effects of quantum entanglement1,2, are usually dramatized using Bell’s
inequalities.3–8 These show that correlations between measurements on two spa-
tially separated systems can be higher than anything allowed by the “local realis-
tic” (i.e. classical) theories. The way that testing Bell’s inequalities almost invari-
ably proceeds is, in very broad terms, as follows: Alice and Bob share a num-
ber of entangled pairs and Alice measures her systems at the same time as
Bob measures his systems. After that, they communicate classically their results
to each other and compute various correlation functions. When they combine
these correlation functions into a Bell’s inequality, they can then check if the
inequality is violated (signifying the existence of correlations stronger than any
classical ones). It is crucial for this experiment that Alice and Bob classically
communicate with each other. Otherwise they would never be able to compute
the necessary correlation functions in order to test the inequality. It is abso-
lutely extraordinary, however, that there are applications where Alice and Bob
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could utilize stronger than classical correlations without any form of classical
communication.

Suppose that Alice and Bob are far away from each other, but happen to share
some entanglement (this could have been established when they met at some earlier
time). Can they, using entanglement but without utilizing any classical communi-
cation, move in the direction towards each other faster than allowed by any local
realistic theory? Namely can they find each other without communication? Sur-
prisingly, this protocol is possible as shown very recently by Brukner et al.9 The
way that this would proceed is that, depending on the outcomes of their respective
measurements, Alice and Bob would move in certain directions, and entanglement
would ensure that the directions are such that they (on average) approach each
other faster than allowed classically and yet without communicating with each
other. This protocol clearly exemplifies why entanglement deserves to be called
“spooky”. The effect could, in fact, be called “spatial orientation using quantum
telepathy”.

Here we experimentally demonstrate that quantum entanglement indeed leads
to the faster than classical orientation in space.

2. Spatial Orientation

Two partners (Alice and Bob) are on the two poles of the Earth; there are three
paths and two directions (+ and −) for each path: each partner have to find the
other in the lack of any classical communication (Fig. 1 ). To achieve their goal
the best strategy is to maximize the probability to take the same direction, if they
choose the same path, and the probability to take opposite directions if they choose

Fig. 1. Two partners (Alice and Bob) are on the two poles of the Earth: there are three paths
and two directions (+ and −) for each path: each partner have to find the other in the lack of any
classical communication. To achieve their goal the best strategy is to maximize the probability
to take the same directions, if they choose the same path, and the probability to take opposite
directions if they choose different paths.
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different paths. The overall probability of success is given by

P =
1
9




3∑
i=1

Pii (same) +
3∑

i�=j=1

Pij (opp)


 (1)

where Pij (opp) is the probability that Alice and Bob take opposite direction, if
they choose different paths, Pii (same) is the probability that they take the same
direction if they choose the same path.

The probability of success of any classical protocol is bounded by the value 7/9,
as it was demonstrated that

β =
3∑

i=1

Pii (same) +
3∑

i�=j=1

Pij (opp) ≤ 7 (2)

holds for all local realistic models.9

To increase the probability of success, Alice and Bob can share polarization-
entangled photon pairs: every partner independently choose a path at random from
the set {1,2,3}. The choice of the path determines a choice of direction of polariza-
tion measurements: the possible outputs (+ or −) fix the direction along the path.

3. The Min-Max Principle

We use the min-max principle to evaluate the optimal entangled state and the
optimal direction of polarization measurements that violate the classical bound.

The min-max principle for self-adjoint transformations10,11 states that the oper-
ator norm is bounded by the minimal and maximal eigenvalues. The norm of the
self-adjoint transformation resulting from the sum of the quantum counterparts of
all the classical terms contributing to a particular Bell inequality obeys the min-
max principle. Thus determining the maximal violation of classical Bell’s inequali-
ties amounts to solving an eigenvalue problem. The associated eigenstates are the
multi-partite states which yield a maximum violation of the classical bounds under
the given experimental setup.12–15

In order to evaluate the quantum counterpart of the inequality (2), the classical
probabilities have to be substituted by the quantum ones. Let us consider a two
spin 1/2 particles configuration, described by its density matrix ρ, in which the two
particles move in opposite directions along the y-axis and the spin components are
measured in the x–z plane. In such a case, the single particle spin-up and down
observables along the angles ϑi, ϑj , correspond to the projections A± (ϑi), with

A±(ϑ) =
1
2
(I ± n(ϑ)σ), (3)

where σ is the vector of the Pauli matrices. The joint probability qijfor finding the
left particle in the spin-up state along the angle ϑi and the right particle in the
spin-up state along the angle ϑj is given by

qij = tr{ρ[A+(ϑi) ⊗ A+(ϑj)]}. (4)
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Then, substituting in the inequality (2), we obtain

Pii(same) = tr{ρ[A+(ϑi) ⊗ A+(ϑi) + A−(ϑi) ⊗ A−(ϑi)]},
Pij(opp) = tr{ρ[A+(ϑi) ⊗ A−(ϑj) + A−(ϑi) ⊗ A+(ϑj)]}. (5)

We are interested in maximal violation of the inequality (2) with three possible
measurements setting per observer: Alice and Bob choose between three dichotomic
observables, determined by three measurements angles ϑ1, ϑ2, ϑ3. For a single value
parametrization, for example, ϑ1 = 0, ϑ2 = 2ϑ, ϑ3 = −2ϑ, the eigenvalues λ1,2,3,4,
and the eigenvectors ν1,2,3,4, corresponding to the maximal violating eigenstates of
the self-adjoint operator O33

O33 =
∑

s∈{+,−}

3∑
i=1

As(ϑi) ⊗ As(ϑi)

+
∑

s�=t∈{+,−}

3∑
i�=j=1

As(ϑi) ⊗ At(ϑj) (6)

are

λ1 = 6 − 2 cos(2ϑ) − cos(4ϑ), ν1 = |Φ+〉,
λ2 = 5 + 2 cos(2ϑ) − cos(4ϑ), ν2 = |Ψ+〉,
λ3 = 4 − 2 cos(2ϑ) + cos(4ϑ), ν3 = |Φ−〉,
λ4 = 3 + 2 cos(2ϑ) + cos(4ϑ), ν4 = |Ψ−〉.

(7)

In this case to each Bell’s state corresponds a single eigenvalue. We obtain, from 7,
that only the state |Φ+〉 violates the classical bound 7, reaching the value 7.5.

4. Experimental Results

In the experimental set-up (see Fig. 2), a 3mm long β-barium borate crystal, cut
for a Type II phase-matching,16–18 is pumped in ultrafast regime (120 fs) by a
train of Ωpump = 410nm pulses generated by the second harmonic of a Ti:Sapphire
laser. SPDC (Spontaneous Parametric Down-Converted) photon pairs at 820 nm
(Ωpump/2) are generated with an emission angle of 3◦. After passing through the
interferometer, thanks to temporal engineering and amplitude symmetrization, we
obtain the entangled state

|Φ+〉 =
1√
2
(|HH〉 + |V V 〉), (8)

where H (V) stays for Horizontal (Vertical). The photons are coupled by lenses into
single-mode fibers. Coupling efficiency has been optimized by a proper engineering
of the pump and the collecting mode in experimental conditions.19 Dichroic mirrors
are placed in front of the fiber couplers to reduce stray light due to pump scattering.
Half Wave Plates (HWPs) before the fiber coupler, together with fiber-integrated
polarizing beam splitters (PBSs), project photons in the polarization basis |s(2ϑ)〉 =
cos(ϑ)|H〉 + sin(ϑ)|V 〉, |s⊥(2ϑ)〉 = sin(ϑ)|H〉 − cos(ϑ)|V 〉. Photons are detected by
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Fig. 2. Experimental set-up. A 3mm long β-barium borate crystal, cut for a Type II phase-
matching, is pumped in ultrafast regime. The SPDC photon pairs, are generated as coherent
superposition of |HV 〉 and |V H〉. The HWP changes the two alternatives in |HH〉 and |V V 〉.
The PBS provides the symmetrization of amplitude probabilities. The temporal superposition of
the two alternatives is reached by changing the length of the trombone (τ). At the output of the
interferometer the Bell state

˛
˛Φ+

¸
is synthesized. By tilting the BBO crystal and rotating the

third HWP it is possible to synthesize all Bell States or a linear combination of two of them.20,21

single photon counters (Perkin-Elmer SPCM-AQR-14). By tilting the BBO crystal
and rotating the third HWP it is possible to synthesize all Bell States or a linear
combination of two of them.20,21

The local observables Â±(ϑi) can be rewritten for the chosen polarization basis
{|s(2ϑ)〉, |s⊥(2ϑ)〉} as

Â+ = |s(2ϑ)〉〈s(2ϑ)|,
Â− = |s⊥(2ϑ)〉〈s⊥(2ϑ)|, (9)

and the correlation functions (4) can be expressed in terms of coincidence detection
probabilities px,y(ϑi, ϑj) as

〈A+(ϑi) ⊗ A+(ϑi) + A−(ϑi) ⊗ A−(ϑi)〉 = p++(ϑi, ϑi) + p−−(ϑi, ϑi), (10)

〈A+(ϑi) ⊗ A−(ϑj) + A−(ϑi) ⊗ A+(ϑj)〉 = p+−(ϑi, ϑj) + p−+(ϑi, ϑj), (11)
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where x, y = +,− are the two outputs of the integrated PBS and px,y (ϑi, ϑj) are
expressed in terms of coincident counts:

px,y (ϑi, ϑj) =
Nx,y (ϑi, ϑj)

NTOT
, (12)

where Nx,y (ϑi, ϑj) is the number of coincidences measured by the pair of detec-
tors x, y in the above described polarization basis, and NTOT = N++(ϑi, ϑj) +
N+−(ϑi, ϑj) + N−+(ϑi, ϑj) + N−−(ϑi, ϑj). In Fig. 3, we show the experimental
reconstruction of β for the mono-dimensional parametrization (0, 2ϑ,−2ϑ), and, in
particular, the violation of the maximum values of the Bell’s operator β for the state
|Φ+〉. Due to the experimental imperfections (misalignment and presence of stray
light), the state generated from the source could be written as p|Φ+〉〈Φ+|+ (1−p)

4 I.
From the experimental value β � 7.41 and the corresponding fit procedure, we
obtained p � 0.98.

Fig. 3. Experimental reconstruction of β for parametrization (0, 2ϑ,−2ϑ). A non-ideal state

affected by white noise can be written as: p|Φ+〉〈Φ+|+ (1−p)
4

I. The maximum experimental value
is β � 7.41 and from the corresponding fit procedure we obtained the value p � 0.98.
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Thus it could seem not surprising that a maximally entangled state is the one
violating classical forecasts and providing a “speed-up” in spatial orientation, the
actual demonstration of this conclusion is not obvious and could be not valid
for different Bell’s like inequalities. Moreover, the fact that the |Φ+〉 state, and
only this maximally entangled state, violates the inequality (2) is undoubtedly not
a priori predictable. In this context the min-max principle definitely appears as a
powerful tool.
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