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Classically, time travel is inconsistent with free will. If one could visit the
past, then one could change the past, and this would lead to an alternative
present. So there is a paradox here, which is best illustrated by the famous
scenario of a person going back in time to shoot his father before his father
has met his mother, and thus negating the possibility of his having ever been
born. It is for reasons like this that time travel has been considered impossible
in principle [1].

Of course, one can get around this problem if one considers the universe
to be totally deterministic, and free will to be merely an illusion. Then the
possibility of changing the past (or the future, for that matter) no longer
exists. Since we prefer to think that the writing of this paper was not pre-
ordained at the time of the big bang, we shall reject this solution on psycho-
logical grounds, if not logical ones, and ask whether the paradoxes of classical
physics can be gotten around, quantum mechanically.

Most attempts to go beyond the confines of classical theory in order to
study time travel have been in the framework of relativity theory, making use
of the freedom to warp the topological properties of spacetime. We shall not
comment on these here, except to note that they are not incompatible with
what we shall be saying, and might conceivably be combined with it.

It seems to us that time travel is very much in the spirit of quantum
mechanics, and in fact, it seems quite arbitrary and outside the spirit of
the subject to forbid it [2]. For example, if one studies the propagation of a
physical system from time t1 to a later time t2, one writes

ψ(t2) = U(t2, t1)ψ(t1) , t2 > t1 , (4.1)

where U is some unitary operator describing the dynamical unfolding of the
system. To calculate U , one sums over all possible paths leading from the
initial state to the final state, but restricting these paths to the forward
direction of time.

Furthermore, it is well known that when one makes measurements in
quantum theory, one’s simple sense of causality is violated, and so a classical
sense of causality is a rather poor guide as to what should or should not be
allowed quantum mechanically. And this restriction would seem to violate
the spirit of the entire enterprise. Specifically, why should there not be some
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form of feedback into the past in determining what will happen in the future
(see Fig. 4.1)?
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Fig. 4.1. In the path integral one can take all paths (a) that go forward in time,
but one excludes all paths (b) that go backward in time

In order to incorporate some form of feedback into the scheme, a simple
feedback mechanism such as that used in electronic circuits would be impossi-
ble, because in such a scheme, a simple feedback loop, such as that of Fig. 4.2
is used, and in such a loop, one has two circuit paths feeding into one, and
quantum mechanically this would violate unitarity, because it could not be
uniquely reversed. However, quantum mechanically, there is another way to
introduce feedback, and that is through the introduction of beam splitters,
which are unitary.

Fig. 4.2. In a classical feedback circuit, one inserts a loop that goes from a later
time to an earlier time. The loop then has two entry ports and only one exit port,
so that one cannot uniquely reverse it, and if tried quantum mechanically, it would
violate unitarity

4.1 Model of a Feedback System in Time

The model that we introduce is one which has two beam splitters, which
allows us to generalize the classical scheme of Fig. 4.2, and at the same time
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to present a unitary scheme allowing the particle to sample earlier times.
This should not be confused with the operation of time reversal, which is an
anti-unitary operation. The scheme is shown in Fig. 4.3.
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Fig. 4.3. A quantum time evolution scheme with feedback. With no feedback, ψ(t1)
would evolve through G1 into ψ3(t2). There is another evolution channel G2 and a
feedback channel M that alter the output at time t2

In this scheme, if there were no feedback, then the standard unitary time
development would have ψ(t1) evolving into ψ3(t2),

ψ3(t2) = G1ψ(t1) . (4.2)

Here, the operator M generates the effects of the feedback in time. These
‘beam splitters’ are figurative, and their role is merely to couple the two in-
coming channels to two outgoing channels. The operator G1 represents the
ordinary time development in the absence of time feedback. The operator G2
represents an alternate possible time evolution that can take place and com-
pete with G1 because there is feedback. We want to find ψ3(t2) = f

(
ψ(t1)

)
in the presence of the feedback in time that is generated by the operator M .

At the beam splitters, which are shown in more detail in Fig. 4.4, the
forward amplitude is α, while the reflected amplitude is iβ. One needs the
factor of i because the two amplitudes must differ by 90◦ in order to preserve
unitarity. Normally, we expect that α� β, and in the limit α = 1, we should
get the situation represented by (4.2).

The beam splitters perform the unitary transformation

|a〉 = α|d〉+ iβ|c〉 , |b〉 = α|c〉+ iβ|d〉 , α2 + β2 = 1 . (4.3)

Here we assume for simplicity that α and β are real. We can invert this to
obtain
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Fig. 4.4. The beam splitter transmits with an amplitude α and reflects with an
amplitude iβ. The factor of i preserves unitarity

|d〉 = α|a〉 − iβ|b〉 , |c〉 = α|b〉 − iβ|a〉 . (4.4)

The overall governing equations can be read directly from Fig. 4.3. At time
t2 the second beam splitter determines ψ3(t2) and ψ4(t2). We have

ψ3(t2) ≡ ψ′
3 =
[
αψ1(t2)− iβψ2(t2)

]
= αψ′

1 − iβψ′
2 , (4.5)

where the prime indicates the time t2 in the argument, and no prime indicates
the time t1. The wave functions ψ1 and ψ2 are determined at time t2 by

ψ1(t2) = ψ′
1 = G1ψ1(t1) = G1ψ1 , (4.6)

ψ′
2 = G2ψ2 . (4.7)

So that from (4.5),

ψ′
3 = αG1ψ1 − iβG2ψ2 , (4.8)

and equivalently

ψ′
4 = αG2ψ2 − iβG1ψ1 . (4.9)

The propagator M is what produces the feedback in time, propagating from
t2 back to t1, so that ψ4(t1) = Mψ4(t2), or

ψ4 = Mψ′
4 . (4.10)

At the t1 beam splitter,

ψ1 = αψ − iβψ4 , (4.11)
ψ2 = αψ4 − iβψ . (4.12)
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4.2 The Solution

First, we want to eliminate the ψ4 in (4.11) and (4.12), to get equations for
ψ1 and ψ2. Then from (4.8) we can obtain ψ′

3. From (4.9) and (4.10),

ψ4 = Mψ′
4 = αMG2ψ2 − iβMG1ψ1 . (4.13)

We plug this into (4.11) and (4.12),

ψ1 = αψ − iβ(αMG2ψ2 − iβMG1ψ1) , (4.14)
ψ2 = α(αMG2ψ2 − iβMG1ψ1)− iβψ . (4.15)

We can rewrite these as

ψ1 = (1 + β2MG1)−1(−iαβMG2)ψ2 + α(1 + β2MG1)−1ψ , (4.16)
ψ2 = (1− α2MG2)−1(−iαβMG1)ψ1 − iβ(1− α2MG2)−1ψ . (4.17)

These are two simultaneous equations that we must solve to find ψ1 and ψ2
as functions of ψ. To solve for ψ1, substitute (4.17) into (4.16),

ψ1 = (1 + β2MG1)−1(−iαβMG2)
[
(1− α2MG2)−1(−iαβMG1)ψ1

−iβ(1− α2MG2)−1ψ
]

+ α(1 + β2MG1)−1ψ . (4.18)

This can be rewritten as[
1 + α2β2(1 + β2MG1)−1(MG2)(1− α2MG2)−1(MG1)

]
ψ1 (4.19)

= (1 + β2MG1)−1 [−αβ2MG2(1− α2MG2)−1 + α
]
ψ .

If we write this as

[X]ψ1 = Y −1[Z]ψ , (4.20)

then we can simplify the equation as follows:

Y X = 1 + β2MG1 + α2β2MG2(1− α2MG2)−1MG1

= 1 + β2 [1 + (1− α2MG2)−1α2MG2
]
MG1

= 1 + β2(1− α2MG2)−1MG1 , (4.21)

and

Z = α(1− α2MG2)−1(1− α2MG2 − β2MG2)
= α(1− α2MG2)−1(1−MG2) . (4.22)

Thus,



68 Daniel M. Greenberger and Karl Svozil

ψ1 = α
[
1 + β2(1− α2MG2)−1MG1

]−1
(1− α2MG2)−1(1−MG2)ψ .

(4.23)

Then, using the identity A−1B−1 = (BA)−1, we finally get

ψ1 = α(1− α2MG2 + β2MG1)−1(1−MG2)ψ . (4.24)

We can solve for ψ2 similarly, by substituting (4.16) into (4.17),

ψ2 = −iβ(1− α2MG2 + β2MG1)−1(1 + MG1)ψ . (4.25)

Notice that in the denominator term in both (4.24) and (4.25), α and β have
reversed the role of the operators they apply to. We can finally use (4.8) to
solve for ψ′

3 = ψ3(t2),

ψ3(t2) =
[
α2G1D(1−MG2)− β2G2D(1 + MG1)

]
ψ(t1) , (4.26)

where D = (1 + β2MG1 − α2MG2)−1.

4.3 Some Important Special Cases

The Case α = 1, β = 0. This is the case where there is no feedback. Here

ψ′
3 = G1(1−MG2)−1(1−MG2)ψ = G1ψ . (4.27)

The Case β = 1, α = 0. This is the case where there is only feedback. Here

ψ′
3 = −G2(1 + MG1)−1(1 + MG1)ψ = −G2ψ . (4.28)

The Case G1 = G2 ≡ G.

ψ′
3 = G

[
1 + (β2 − α2)MG

]−1
(α2 − β2 −MG)ψ . (4.29)

If we also have α2 = β2 = 1/2, then

ψ′
3 = −GMGψ . (4.30)

The Case β � 1. This is expected to be the usual case. Then the answer
only depends on β2 = γ. Also, α2 = 1− β2 = 1− γ. Then to lowest order in
γ, the denominator D in (4.26) becomes

D =
[
1 + γMG1 − (1− γ)MG2

]−1 (4.31)

= (1−MG2)−1 − γ(1−MG2)−1(MG1 + MG2)(1−MG2)−1 ,

so that

ψ′
3 =
{

(1− γ)G1
[
1− γ(1−MG2)−1(MG1 + MG2)

]
−γG2(1−MG2)−1(1 + MG1)

}
ψ

= G1ψ − γ(G1 + G2)(1−MG2)(1 + MG1)ψ . (4.32)
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4.4 The Classical Paradox of Shooting your Father

The most interesting case is the one that corresponds to the classical paradox
where you shoot your father before he has met your mother, so that you
can never be born. This case has a rather fascinating quantum-mechanical
resolution. This is the case G1 = 0, where there is a perfect absorber in the
beam so that the system without any feedback would never get to evolve to
time t2. But quantum mechanically, we assume that there is another path
along G2, the one where you do not shoot your father, that has a probability
β without feedback. In quantum theory we deal with probabilities, and as
long as there is any chance that you may not meet your father, we must take
this into account.

The solution in this case is

ψ′
3 = −β2G2(1− α2MG2)−1ψ . (4.33)

We assume for simplicity that G2 is just the standard time evolution operator

G2 = e−iE(t2−t1)/h . (4.34)

and M is just the simplest backwards in time evolution operator

M = e−iE(t1−t2)/h+iφ , (4.35)

where we have also allowed for an extra phase shift. Then

ψ′
3 = −β2e−iE(t2−t1)/h

(
1− α2eiφ)−1

ψ , (4.36)

|ψ′
3|

2 =
β4

(1− α2eiφ) (1− α2e−iφ)
|ψ|2 =

1
1 + 4(α2/β4) sin2(φ/2)

|ψ|2 . (4.37)

Note that for φ = 0, ψ′
3 = −e−iE∆t/hψ, for any value of β. That means that

no matter how small the probability of your ever having reached here in the
first place, the fact that you are here, which can only happen because α �= 1,
guarantees that even though you are certain to have shot your father if you
had met him (G1 = 0), nonetheless you will not have met him! You will have
taken the other path, with 100% certainty. Obviously, this must be the case,
if you are to be here at all.

How can we understand this result? In our model, with φ = 0, we have
G1 = 0, and MG2 = 1. Also, we will assume that β � 1, even though this is
not necessary. The various amplitudes are

|ψ1| = 0 , |ψ2/ψ| = 1/β , |ψ4/ψ| = α/β , |ψ′
3/ψ| = 1 . (4.38)

So we see that the two paths of the beam splitter at t1 leading to the path
ψ1 cancel out. But of the original beam ψ, α passes through to ψ1, while
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of the beam ψ4, only the fraction β leaks through to ψ1. So the beam ψ4
must have a very large amplitude, which it does, as we can see from (4.38),
so that the two contributions can cancel at ψ1. In fact ψ4 has a much larger
amplitude than the original beam! Similarly, in order to have |ψ′

3| = |ψ|,
then ψ2 must have a very large amplitude. Thus we see that there is a large
current flowing around the system, between ψ2 and ψ4. But does this not
violate unitarity? The answer is that if they were both running forward in
time, it would. But one of these currents is running forward in time, while the
other runs backward in time, and so they do not in this case violate unitarity.
This is how our solution is possible.

4.5 Conclusion

According to our model, if you could travel into the past quantum mechan-
ically, you would only see those alternatives consistent with the world you
left behind you. In other words, while you are aware of the past, you can-
not change it. No matter how unlikely the events are that could have led to
your present circumstances, once they have actually occurred, they cannot
be changed. Your trip would set up resonances that are consistent with the
future that has already unfolded.

This also has enormous consequences on the paradoxes of free will. It
shows that it is perfectly logical to assume that one has many choices and
that one is free to take any one of them. Until a choice is taken, the future is
not determined. However, once a choice is taken, and it leads to a particular
future, it was inevitable. It could not have been otherwise. The boundary
condition that the future events happened as they already have, guarantees
that they must have been prepared for in the past. So, looking backwards, the
world is deterministic. However, looking forwards, the future is probabilistic.
This completely explains the classical paradox. In fact, it serves as a kind
of indirect evidence that such feedback must actually take place in nature,
in the sense that without it, a paradox exists, while with it, the paradox is
resolved. (Of course, there is an equally likely explanation, namely that going
backward in time is impossible. This also solves the paradox by avoiding it.)

The model also has consequences concerning the many-worlds interpre-
tation of quantum theory. The world may appear to keep splitting so far as
the future is concerned. However, once a measurement is made, only those
histories consistent with that measurement are possible. In other words, with
time travel, other alternative worlds do not exist, as once a measurement
has been made confirming the world we live in, the other worlds would be
impossible to reach from the original one. This explanation makes the von
Neumann state reduction hypothesis much more reasonable, and in fact acts
as a sort of justification of it.

Another interesting point comes from examining (4.37). For small angles
φ, we see that
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|ψ′
3|2 =

1
1 + 4(α2/β4) sin2(φ/2)

|ψ|2 −→ 1
1 + α2φ2/β4 |ψ|

2 , (4.39)

so that the above result is strongly resonant, with a Lorentzian shape, and a
width ∆φ ∼ β2, since α ∼ 1. Thus less ‘deterministic’ and fuzzier time trav-
elling might be possible, a possibility we have not yet explored. Neither have
we explored the possibility that feedback should be possible into the future
as well as the past. Of course in this case, it ought to be called ‘feedforward’,
rather than feedback.
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