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Abstract. Bell-type inequalities and violations thereof reveal temdamental differences between standard probability
theory and its quantum counterpart. In the course of preiviotestigations ultimate bounds on quantum mechanickdtioms
have been found. For example, Tsirelson’s bound consituggobal upper limit for quantum violations of the Claubtrne-
Shimony-Holt (CHSH) and the Clauser-Horne (CH) inequetditiHere we investigate a method for calculating the precise
quantum bounds on arbitrary Bell-type inequalities by sm\the eigenvalue problem for the operator associated ewtth
Bell-type inequality. Thereby, we use the min-max prineipd calculate the norm of these self-adjoint operators fiioen
maximal eigenvalue yielding the upper bound for a particsés of measurement parameters. The eigenvectors congdiago

to the maximal eigenvalues provide the quantum state foclmhiBell-type inequality is maximally violated.

INTRODUCTION

One of the most puzzling features of quantum mechanics igith&tion of so-called Bell-type inequalities represent-
ing a cornerstone of our present understanding of quantaobrapility theory [1]. As pointed out by John Bell [2] such

a violation, as predicted by quantum mechanics, requireslizal reconsideration of basic physical principles like
the assumption of local realism. However, Bell-type indiiea have already a long tradition dating back to George
Boole’s work on “conditions of possible experience” [3, dgaling with the question of necessary and sufficient con-
ditions on probabilities of logically interconnected et&h Take for example the statements: “The probability of rain
in Vaxjo is about 80%” and “The probability of rain in Vienra90%". Nobody would believe that the joint probabil-
ity of rain in both places could be just 10% — the claim thatjthiet probability is very much lower than the single
probabilities is apparently counterintuitive. The quastiemains: Which numbers could be considered reasonathle an
consistent? Boole’s requirements on the (joint) probtddliare expressed by certain equations or inequalitia8ngl
those (joint) probabilities.

Since Bell’s investigations [2, 5] into bounds on classigalbabilities and their relation to quantum mechanical
predictions, similar inequalities for particular phydisatups have been discussed in great number and detaibfsee f
example Refs. [6, 7, 8, 9]). Furthermore, violations of Bgfle inequalities, as predicted by quantum mechanicg hav
been experimentally verified in different areas of physid} fL1, 12, 13] to a very good degree of accuracy.

However, whereas these bounds are interesting for an itispexd the violations of classical probabilities by quan-
tum probabilities, the issue of the validity of quantum pbliities and their experimental verification is complgtel
different. Recently, Bovinet al.[14] conducted an experiment based on numerical studidsdogurrent authors [15]
and triggered by a proposal of Cabello [16] to verify boundsjoantum probabilities depending on a particular choice
of measurements.

In what follows we shall present analytical as well as nugastudies on such quantum bounds allowing for further
experimental tests of different kinds of Bell-type ineques.

1 We are therefore tempted to use the term “Boole-Bell-typegimlities”, but to be in line with current terminology weeugist “Bell-type
inequalities” instead.
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CORRELATION POLYTOPES

At first we shall start from a geometrical derivation of bosmah classical probabilities given by linear inequalities i
terms of correlation polytopes [17, 18, 19, 20, 21]. Congidean arbitrary number of classical evenisay,...,an

one can assign to each event a certain probalmfity,, ..., pn and probabilitiep;, . .. for the joint eventsy Nay, .. ..
These probability values can be collected to form the thepments of a vectop = (p1, p2,-- -, Pn, P12,--.), Where
eachp;, pij (i,j = 1,...,n) can take values in the interv#D,1]. Since the eventsy, ap, ... are assumed to be
independent, each single probabilgycan also take its extremal value 0 or 1 and the vectors comgradl possible
combinations of extremal valuep;j(= 0,1 andp;j; = pip;) can be regarded as rows of a truth table; with the symbols
“0” and “1” corresponding tdfalse” and“true,” respectively.

Any classical probability distribution; i. e., any vectpy can be represented as a convex sum over the extremal
probability distributions given by the row entries of thattr table. It can therefore be regarded as some g€
whereC = con\K) is a convex polytope defined by the set of all points that camriiteen as a convex sum extending
over all vectors associated with row entries in the truthetalldore formally,

conVK) = {_zzni/\ixi Ai >0, _22n1)\i = 1} )

K ={X1,X2,...,Xon} = { (ty,t2,...,ta,tety,...) | ti € {0,1},i=1,...,n}. 2

Here, the termity, ... stand for arbitrary products associated with the joint psifions which are considered. Exactly
what terms are considered here depends on the particulaicghgonfiguration.

In a next step towards the linear inequalities sought orizedithe Minkowsky-Weyl representation theorem [22,
p.29] stating that every convex polytope in Euclidean realce has a dual description: either as the convex hull of
its extreme points - in our case the rows of the truth table asothe intersection of a finite number of half-spaces.
Each half space can be described by a linear inequality. Tairothe inequalities from the vertices one has to solve
the so-callechull problem These inequalities coincide with Boole’s “conditions afsgible experience”; i. e., they
constitute the bounds of classical probabilities. The geteqjualities obtained is maximal and complete, as no other
system of inequalities exists which characterizes thestation polytope completely and exhaustively.

For particular physical setups these inequalities cooegpo Bell-type inequalities. Therefore correlation gopes
provide a constructive way of finding the entire set of Bgpd inequalities for a given physical configuration [23,,24]
although from a computational complexity point of view thelplem remains intractable [25].

As an example, we consider the derivation of the well knowauSér-Horne inequality [7]: Given a source emitting
pairs of correlated spin-1/2 particles either in the pesitr in the negative-direction, the spin of both particles
can be measured in arbitrary directions perpendiculareégtiopagation direction; i. e., restricted to the plane.
Implementing two measurement directions on each sideddlesy the angles, 3 for the particle propagating in
the negativey direction (left hand side) ang, d for the particle propagating along the positivexis (right hand
side), we obtain the probabilities for measuring “spin-tgg”each particle and measurement directianpg, py, Ps-

The joint probabilities for measuring “spin-up” on the l&fhile measuring “spin-up” on the right in coincidence
— but in general with different measurement directions —dmeoted byp,y, Pys,--- The probability distribution
vector for this situation is consequenty= (pa, Pg, Py; Ps, Pay; Pgy; Pgs, Pas) @and the truth table (comprising the
extremal probabilities) consists of 2 16 rows by insertingy, Pg, Py, Ps € {0,1}. The corresponding polytope is
eight dimensional. By solving the hull problem, which foisteimple setup can easily be done, we obtain inequalities
like 0 < pa, Pay < 1, Pa + Py — Pay < 1; and in the similar manner fgug, py, ps. Additionaly, inequalities of the
form

with

—1< Pay+ Pas+ Pgy— Pgs— Pa—Ps <0 3)

also represent bounds of this correlation polytope. Theguaéty (3), termedClauser-Horne (CH) inequalityand

the inequalities containing all permutations of the parmamse are violated by quantum theory for particular choices
of the angles and for specific quantum states. They corestit@érefore a demarcation criteria between classical and
non-classical probabilities, such as the ones encouniegdantum theory.

88



VIOLATION OF BELL-TYPE INEQUALITIES

Similar to the bounds on classical probabilities given by Bell-type inequalities, there exist bounds on quantum
probabilities which will be the subject of the following disssion. There have been investigations in the analytic
aspects of bounds on quantum probabilities, most prominbgtTsirelson [21, 26] and recently by others in Refs.
[19, 27, 16, 28], but also numerical [15] and experimentd] [&st have been performed. The quantum probabilities do
not violate Bell-type inequalities maximally [29, 30, 3Thke, for example, the well known Clauser-Horne-Shimony-
Holt (CHSH) inequality?
|E(a,y)+E(B,y)+E(B,d) —E(a,d)[ <2, 4)

whereE(u, v) denotes the correlation function for two particle corrielas with possible values in the interjall, 1]
when measuring their spin/polarization in coincidenceaglthe directiong: andv, respectively. The global limit for
a quantum violation of this inequality is,2 [21, 32]; quantum theory does not allow a higher value, ntienahich
state and which measurement directions are chosen. Hovieyeinciple, the four terms on the left hand side of Eq.
(4) could be set such that a value of 4 can be obtained by apatephoices oft1 for the correlation functions.

Popescu and Rohrlich [29] investigated the case where fpaihiscality” is assumed without referring to a specific
physical model (such as quantum mechanics), whethertieadisnot. In this context, “physical locality” means that
the marginal probabilities for measuring an observableranside should be independent of the observable measured
on the other side, which is a natural assumption for a Lornentriant theory. The maximal value of the left hand side
of Eq. (4) has been shown to be 4 as well, which is beyond thetgomabound 2/2 and we can conclude that quantum
mechanics does not exploit the whole range of violationsiptes in a theory conforming to relativistic causality.
Still, in our opinion, the nagging question remains why quammechanics does not violate the inequality to a higher
degree.

In what follows, we will restrict our attention to the simplask to explore the quantum bounds on violations of
Bell-type inqualities for particular given measurememédiions and arbitrary states. It turns out that the eqnafior
the analytic description of the quantum bounds can be dihyesolving an eigenvalue problem. Intuitively it cannot
be expected that it is feasible to achieve a maximal vialatibsome inequality for any set of measurements just by
choosing a single appropriate state.

The quantum mechanical description of the physical scemhscussed above involves spin measurements repre-
sented by projection operators

F(0) = 5 (124 6(0)). )

. cos6 sin@
with &(0) = sin@ —cos@
for the two-dimensional identity matrix. For an even mor@aem@l description we would have to take all possible
two-dimensional projection operators into account, gponding to measurements in arbitrary directions. As this
generalization is straightforward and does not lead to anyennsight, we will work with this restricted set of
measurements parameterized in Eq. (5).

F(6) acts on one of the two particles. This implies that we havéntimse a tensor product of two Hilbert spaces to
represent the state vectors corresponding to possib&eaafigurations; i. e 77 = 74 ® . The representation of
a single-particle measurementi# is then

, 8 denoting the direction of measurement in thez plane, and 1 standing

q(9):%(12+6(9))®12 or 12®%(12+6(6)) 6)

for a measurement on the particle emitted in the negatideection (577), or in the positivey-direction (572),
respectively. Two-particle measurements are implemeényexpplyingF (6) on both.73 and.7#; i. e.,

q(8,8') = %(12+6(e))®% (12+0(6")), )

corresponding to a measurement of the joint probabilifiéss setup can easily be enlarged to systems comprising
more than two particles by the tensor product of the appatpHlilbert spaces, but for the sake of simplicity we will
restrict ourselves to bipartite systems.

2 The CHSH-inequality is defined in terms of expectation valimstead of probabilitiess its equivalent in terms of pholities being the Clauser-
Horne (CH) inequality.
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The general method for obtaining the quantum violations @f-B/pe inequalities is then to replace the classical
probabilities by projection operators in Egs. (6,7) in aaiarBell-type inequality to obtain thBell-operator which
is a sum of projection operators. In the case of the CH inéiguale obtains

—1<q(6a,6y) +d(6a; 65) + a(8p, 6y) —A(8p, 65) —A(8a) — q(65) <O. (8)
In a second step one calculates the quantum mechanicaltatipewalues by
(q(8)) = TrW q(8)], 9)

whereW is a positive definite, Hermitian and normalized densityraps denoting the state of the system. For some
W and set of angle§8y, 63, 6, 65} one obtains a violation of a classical inequality.
In general the Bell-operators can be written in the form

O= % bi,.iwnR®R,®...Ry, (10)

i1,i2,IN

with real valued coefficients; i, .iy. HereN is the number of particles involved and tReare either projection
operators denoting a measurement on partiolehe identity when no measurement is performed oni-theparticle.
Since(A®B)" = AT B = A® B and (A+B)" = AT + BT = (A+ B) for arbitrary selfadjoint operators, B, the
Bell-operatorO is also self-adjoint with real eigenvalues. However, tlggeaivalues oD cannot be deduced from the
eigenvalues of the constituerRs ® B, ® ... R, in the sum in Eq. (10) since these are not commuting in geaechl
therefore are not diagonalizable simultaneously.

One can make use of tmein-max principld33, §90], stating that the bound of a self-adjoint operat@qual to the
maximum of the absolute values of its eigenvalues. Thusptblelem of finding the maximal violation possible for a
particular choice of measurements can be solved via anwwgenproblem. The maximal eigenvalue corresponds to
the maximal violation and the associated eigenstates armthti-partite states which yield a maximum violation of
the classical bounds under the given experimental (pasajreztup’.

For a demonstration of the method let us start with the trs@up of two particles measured along a single (but
not necessarily identical) direction on either side. Theiees are(ps, pz, p12 = p1p2) for p1, p2 € {0,1} and thus
(0,0,0), (0,1,0), (1,0,0), (1,1,1); the corresponding face (Bell-type) inequalities of th&/fmpe spanned by the four
vertices are given bpi> < p2, 0< p12 <1, andp; + p2 — p12 < 1.

The classical probabilities have to be substituted by tretgum ones; i.e.,

pr — qu(6)=1[1,+0(6)® 1L,
P2 — G(6)=1,®3 [+ 0(0)], (11)
Pz — 0i12(0,0") =3[+ 0(0)]® 3 [1+0(6")].

It follows that the self-adjoint transformation corresgorg to the classical Bell-type inequalitp{+ p2 — p12 < 1)
is given by

011(0,0) = q1(0) + 02(8) — 0112(0, 8) = sing : (12)

The eigenvalues dD;; are 0 and 1, irrespective 6f the maximal value o®;1 predicted by the min-max principle
does not exceed the classical bound 1.

Now we shall enumerate analytical quantum bounds for theenmberesting cases comprising two or three distinct
measurement directions on either side yielding the quaeunvalents of the Clauser-Horne (CH) inequality, as well
as of the inequalities discussed in [23, 35, 36].

For two measurement directions per side, we obtain the tpaba, based on the CH-inequality [Eg. (3)] upon
substitution of the classical probabilities by projectaperators:

O22(a,B,y,0) = quz(a,y) +014(a,d) +az3(B,y) — G4(B,0) — qu(a) — az(y)- (13)

3 Non-degenerate eigenstates are always representableskyirnensional subspaces and thus are pure, the excepiiuy the possibility of a
mixing between degenerate eigenstates [34].
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The eigenvalues of the self-adjoint transformation in @r&)

M234(a,B,y,0) = %(i V1z£sin(a —B)sin(y—5) — 1), (14)

yielding the maximal bounflO,2|| = max%-1,234Ai. The eigenstates corresponding to maximal violating eigg¢as
are maximally entangled for general measurement angleg igithex—z-plane [28].

The numerical simulation of the bounds of the CH-inequadityased on the generation of arbitrary bipartite density
matricesW; i. e., 4x 4 Hermitian positive matrices with trace equal to one. Simge can write a Hermitian positive
matrix W as the square of a self-adjoint mat\i,= B2. The normalized matri¥v’ = W /Tr[W] can thus be explicitly
parameterized by 16 parametbisb,,...,bigs € R;i. e.,

by bs+ibs bip+ibiz bis+ibig
W — 1 bs — ibe bg. b7 +ibg  biz +_i b1a (15)
SH b2+ 22}25 bJZ by1—ibi> b7 —ibg b3 bg +ib1g

bi1s—ibieg biz—ibis bg—ibig ba

For a particular choice of projection operators, one can generate random staté# in order to find the maximal
violation possible for the current set of projection operatIn Figure 1, both the analytic and the numerical bounds
are depicted for measurement directions 0, 8 = 20, y= 6 andd = 30 dependent on a single parameies [0, 1.

In addition, the well-known maximal violation for the siegistate a® = r1/4 and@ = 371/4 is drawn.

" singlet state-- -- -- ¢
K classical bounds ---- 7
7 analytic quantum bounds——
- numerical quantum bounds = -+-—

Hcr(6)

1.5 2 25 3
B[rad]

FIGURE 1. Numerical simulation of the bounds of the CHSH-inequality
The extension tthreemeasurement operators for each particle merely yieldsadii@nal non-equivalentinequal-
ity (with respect to symmetries) [35, 36]
I33 = P14+ P15+ P16+ P24+ P25 — P26+ P3a— P3s— P1—2p4— ps < 0 (16)

among the 684 inequalities [23] representing the facesepéfisociated classical correlation polytope. The assaktiat
operator for symmetric measurement directions is given by

033(0,6,20,0,60,20) = 014(0,0) + a15(0, 0) + 016(0, 20) + 024(6,0) + 025(8, 6) — 026( 6, 20)+
+034(26, 0) — dss(26, 6) — d1(0) — 274(0) — ds(0)

—4sirf 6 0 0 0
1 0 ~5—2cos9 —3cosD +2cosP 4cogf 2sinf +3sin2 — 2sinP
T 0 4cog § —2(3+4cos®) —2sin@ ’
0 2sin6 + 3sin29 — 2sin3P —2sin@ 2sirt § cog §(4cosd - 3)

(17)
in_the Bell basis{|e"),|y"),[¢),l¢ )} = {(1,0,0,0)7,(0,1,0,0)7,(0,0,1,0)7,(0,0,0,1)"} with [¢*) =
1/4/2(|01) + |10)) and|@*) = 1/+/2(]00) +|11)). In this basisOz3 can be decomposed into a direct sum of a one-
dimensional and a three-dimensional matig = 01 @ 03, thus simplifying the calculations of the real eigenvalues
By using the Cardano method [37], these can be calculateel to b

A1 = —sirfe,
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E b
Ay = =2 = — =
2 V|u cosz 3
B & . & b
Azgq = [u(x)| [cos§ ism§] 3 (18)
Here,u= 1/9(3c—b?) and co§ = Z;(9bc— 2b%—27d)/(u./]u[) whereb = —Trog, c=1/2(Tr%03 — Tro%), d=
— detos. (For convenience we have omitted the dependencigk)m Figure 2, the eigenvalues are plotted as func-
tions of the paramete?. The maximum violation of 14 is obtained foi® = r1/3 with the eigenvector corresponding

A
7-/\ /—\_ @[r ad]
/2 7T 371/2 27
-0.5
——< P
_- N\ Z \\\
e \ / T
— A
15 \\ // 1
N S A2
-2 /,_--b.__.{ ..... - —_— )3
2 5 /// \\\ - 4
~3F---" -7 Teelll

FIGURE 2. Eigenvalues 0033 in dependence of the relative andgle
to A3

W) = L2107 + 210, (19)

|Wmax) is maximally entangled, but in contrast to the CH-ineqyathtis is in general not the case for eigenstates
corresponding to the maximal eigenvalu®at r7/3.

RELATION TO EXPERIMENTS

The analytical quantum bound of the CH-operator has beemerated by Cabello [16] as well as by the current
authors [28] and experimentally verified by Boviabal. [14] using polarization-entangled photon pairs. The ansat
of Cabello for the experimental realization made use of #loe that the eigenstates leading to maximal violations are
maximally entangled. Thus when applying a unitary tramsfationU (6) of the form

sin@ —cosf
U(e):(cose sing )

onto an initial statéy ) = %(|01) —]10)), one obtains all maximally violating states for differénalues/y(6)) =
U(8)® Loy-).

However, in the case @33, this scheme has to be extended, since the maximal violatatgs are not maximally
entangled in general. Such states cannot be created frommaldsentangled initial states by a local unitary operation
Uaw2 € SU(2) ® SU(2), since such a factorized transformation does not changelegeee of entanglement. To
obtain states constituting the quantum bounds, one hasply apitary transformationtls € SU(4) to the initial
state comprising also non-local operations which cannatiiten as a tensor product of two unitary single-particle
operators.

A simplification for an experimental verification of the quam bounds of Bell-type inequalities is due to the
fact that maximal violating states are pure. Therefores gufficient to generate initial states with variable degree
entanglement. Utilizing the Schmidt-decomposition, viahig always possible for a bipartite state, one can write any
pure state in the formp) = 5 Ak|k1) ® |k2) wherel|k;) are orthonormal basis states for particle 1 and 2, resmiygtiv
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andyA? = 1. The weights of tha’s are a measure of the degree of entanglement comprisirspéwal cases where

A1 = A2 = 1/4/2 for a maximally entangled state angd= 0, A, = 1 (or vice versa) for a separable state. Having a
source producing such states in a particular basis one dainaddl other pure states by applying a local unitary
operationUz.2 € SU(2) x SU(2). Appropriate photon sources have been suggested for egdmWhiteet al. [38]

and Barbieriet al.[39] and could therefore be used to trace the bounds on anpitipartite Bell-type inequalities in
the same manner as in the experiment of Bowhal. [14].

CONCLUSION

In conclusion we have shown how to obtain analytically tharqum bounds on Bell-type inequalities for a particular
choice of measurement operators. We have also presentetherinal simulation for obtaining these bounds for
the CH-inequality. We have provided a quantitative analysid derived the exact quantum bounds for bipartite
inequalities involving two or three measurements per 3ite generalization to an arbitrary number of measurement
parameters is straightforward as the dimensionality ofeilgenvalue problem remains constant. For more than two
particles the dimension of the matrix associated with a-Bgle operator increases exponentially. However, one may
conjecture that such matrices can be decomposed into 4 siinecof lower dimensional matrices.

In the context of this conference we also believe that théytina@xpressions of the quantum bounds could serve
as consistency criteria of mathematical models proposetidav that a violation of Bell-type inequalities does not
necessarily imply the absence of a possible local-realiggory from the logical point of view. It is claimed that
violations can be achieved without abandoning a local aalistee position assuming for example time-dependencies
of the random parameters [40], or “chameleon” effects [&1i]l, any appropriate model has to be in accordance with
quantum mechanics not only qualitatively, but also quatiti¢ly, and hence should reproduce also the “fine strutture
of the quantum bounds as discussed above.

Finally, although there is no theoretical evidence for argger-than-quantum violation whatsoever, its mere
possibility justifies the sampling of the fine structure o tuantum bounds from the experimental as well as the
theoretical point of view in order to understand and velttify testriction imposed by quantum theory.
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