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Abstract. For many-particle systems, quantum information in base n can be
defined by partitioning the set of states according to the outcomes of n-ary
( joint) observables. Thereby, k particles can carry k nits. With regards to the
randomness of single outcomes, a context translation principle is proposed.
Quantum randomness is related to the uncontrollable degrees of freedom of
the measurement interface, thereby translating a mismatch between the state
prepared and the state measured.

1. Information in many-particle quantum systems

The preparation of a single particle n-state quantum system in a single state

constitutes the operationalization of a nit, or qunit. Likewise, the occurrence of

an outcome of an observable with n possible outcomes can be associated with

accessing a nit of information. For a single particle observable, this is associated

with choosing a vector from an orthogonal basis of n-dimensional Hilbert space.

In the many-particle case, nits may not only be localized at single particle

observables, since due to entanglement, the nits may be distributed over the

particles by representing joint particle properties.

In what follows we shall review and extend formal generalizations [1, 2] of

the single particle two-state case to an arbitrary finite number of particles with an

arbitrary finite number of different measurement outcomes per particle. Thereby,

we define a nit as a radix n measure of quantum information which is based on

state partitions associated with the outcomes of n-ary observables. We shall

demonstrate the following property: k particles specify k nits in such a way that k

measurements of comeasurable observables with n possible outcomes are necessary to

determine the information. Stated pointedly, k particles can carry k nits.

Conceptually, such properties have been previously proposed by Zeilinger [3]

as a foundational principle for quantum mechanics. Zeilinger merely considered

two-state systems of two and three particles, yet an informal hint for higher-

dimensional single quantum systems is in footnote 6 of [3] on p. 635. There is

a slight difference in the approach of Zeilinger and the author: whereas here the

logico-algebraic properties are studied ‘top-down’ by assuming Hilbert space

quantum mechanics and arriving at the foundational principle purely deductively,

Brukner and Zeilinger [4] reconstruct certain features of quantum physics by

treating this principle ‘bottom-up’ as an axiom.
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1.1. Definition

For a single n-state particle, the nit can be formalized as a fine-grained partition
of n orthogonal states; i.e. if the set of orthogonal states is represented by f1, . . . , ng,
then the nit is defined by choosing one element of the set ff1g, . . . , fngg.

The generalization to k particles involves the construction of k partitions of the
product states with n elements per partition in such a way that every single product
state is obtained by the set theoretic intersection of k elements of all the different
partitions. That is, the partitions which properly represent the set of nits have to
be defined to obey the following properties: (i) every set theoretic intersection of
single elements of the k partitions, one element per partition, yields a single
product state, and (ii) the union of all these intersections obtained by (i) is just the
set of product states. Every single such partition can be interpreted as a nit. For
their implementation, we shall adopt an n-ary search strategy.

In the following, the standard orthonormal basis of nk-dimensional Hilbert
space is identified with the set of states S ¼ f1, 2, . . . , nkg; i.e. (superscript ‘T’
indicates transposition) 1 � ð1, . . . , 0ÞT �j 11, . . . , 1ki ¼j 11i � � � � � j 1ki, . . . , n

k �

ð0, . . . , 1ÞT �j n1, . . . , nki. Here, the single particle states are labelled by 11 through
nk, respectively. Tensor product states are formed and ordered lexicographically
(0 < 1).

The nit operators are defined via diagonal matrices which contain nk�1 equal
amounts of n mutually different numbers such as different primes q1, . . . , qn; i.e.

F1 ¼ diag ðq1, . . . , q1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nk�1 times

, . . . , qn, . . . , qn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nk�1 times|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n0¼1 times

Þ,

F2 ¼ diag ðq1, . . . , q1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nk�2 times

, . . . , qn, . . . , qn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nk�2 times|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n1 times

Þ,

..

.

Fk ¼ diag ðq1, . . . , qn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nk�1 times

Þ: ð1Þ

‘diag ða, b, . . .Þ’ stands for the diagonal matrix with a, b, . . . at the diagonal entries.
The operators implement an n-ary search filter, separating the search space into n
equal partitions of states, such that successive applications of all such filters render
a single state. In this simplest, non-entangled case, the meaning of the ith filter or
nit operator Fi, 1 � i � k, can be expressed as the proposition, ‘the ith particle is in
state q1, . . . , qn’. The nit operators in equation (1) can be combined to a single
measurement. The corresponding ‘context operator’ C ¼ F1F2 � � �Fk can be ob-
tained by taking different prime numbers as diagonal entries of F1, . . . ,Fk

(cf. examples below).
There exist nk! sets of nit operators, which are obtained by forming a ðk� nkÞ

matrix

q1 . . . q1 . . . qn . . . qn
. . .

q1 . . . qn . . . q1 . . . qn

0
@

1
A ð2Þ
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whose rows are the diagonal components of F1, . . . ,Fk from equation (1), by
permuting its columns, and finally by reinterpreting the rows as the diagonal
entries of the new nit operators F0

1, . . . ,F
0
k. This formal procedure is equivalent to

permuting (the labels of ) the nk product states. One consequence of the rearrange-
ment is the transition from non-entangled eigenstates of the single particle states to
entangled eigenstates thereof (see example below). No straightforward meaning
could be associated with the new nit operators in this general case. Note that all
partitions discussed so far are equally weighted and well balanced, as all elements
of them contain an equal number of states.

1.2. Examples: two three-state particle cases and entanglement

An example for the two three-state particle case has been enumerated in [2].
Recall that, in the simplest case, the two nit operators can be constructed according
to the scheme in equation (1) and represented by

F1 ¼ ff1, 2, 3g, f4, 5, 6g, f7, 8, 9gg � diag ða, a, a, b, b, b, c, c, cÞ,

F2 ¼ ff1, 4, 7g, f2, 5, 8g, f3, 6, 9gg � diag ða, b, c, a, b, c, a, b, cÞ :
ð3Þ

If, on the other hand, F2 ¼ diag ðd, e, f , d, e, f , d, e, f Þ and a, b, c, d, e, f , are six
different prime numbers, then, due to the uniqueness of prime decompositions,
the two trit operators can be combined to a single context operator

C ¼ F1 � F2 ¼ F2 � F1 ¼ diag ðad, ae, af , bd, be, bf , cd, ce, cf Þ ð4Þ

which acts on both particles. As C has nine different eigenvalues, it separates the
nine product states completely and at once.

Just as for the two states per particle case [1], there exist 32! ¼ 9! ¼ 362 880
permutations of operators which are all able to separate the nine states. According
to equation (2), they are obtained by forming a ð2� 9Þ matrix whose rows are
the diagonal components of F1 and F2 from equation (3) and permuting all the
columns. The resulting new operators are also valid trit operators; i.e. for every
one of the new pair of partitions (i) the set theoretic intersection of single elements
of the two partitions, one element per partition, is a single product state, and (ii)
the union of all these intersections obtained by (i) is just the set of product states.
(For a proof recall that every permutation amounts to relabelling the product
states.)

The complete set of 9!=ð2 � 3! � 3!Þ ¼ 5040 different two-trit sets can be
evaluated numerically; i.e. in lexicographic order,

ffff1, 2, 3g, f4, 6, 8g, f5, 7, 9gg � ff1, 4, 5g, f2, 6, 7g, f3, 8, 9ggg, ð5Þ

fff1, 2, 3g, f4, 6, 9g, f5, 7, 8gg � ff1, 4, 5g, f2, 6, 7g, f3, 8, 9ggg, ð6Þ

..

.

fff1, 5, 9g, f2, 6, 7g, f3, 4, 8gg � fff1, 6, 8g, f2, 4, 9g, f3, 5, 7ggg, ð7Þ

..

.

fff1, 6, 9g, f2, 5, 7g, f3, 4, 8gg � ff1, 7, 8g, f2, 4, 9g, f3, 5, 6ggg, ð8Þ

fff1, 6, 9g, f2, 5, 8g, f3, 4, 7gg � ff1, 7, 8g, f2, 4, 9g, f3, 5, 6gggg: ð9Þ

A graphical representation of the single particle state space tesselation is
depicted in figure 1.
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In general, the permutations transform non-entangled states into entangled
ones. Consider, for the sake of detail, the ‘(counter)diagonal’ set of trits listed in
equation (7), which is induced by the permutation whose cycle form is (1)(2,5,6,7,
3,9,8,4). If the same two particle ð3� 3Þ product state space representation is
used as in figure 1, then the trits just correspond to the completed diagonals and
counterdiagonals; i.e. if the single particle states are labelled by a1, b1, c1 and
a2, b2, c2, respectively, then the new trit eigenstates fj 1i, j 2i, j 3ig and fj 4i,
j 5i, j 6ig are

j 1i ¼
1

31=2
ja1a2i þ jb1b2i þ jc1c2ið Þ �

1

31=2
1, 0, 0, 0, 1, 0, 0, 0, 1ð Þ

T,

..

.

j 6i ¼
1

31=2
jc1a2i þ jb1b2i þ ja1c2ið Þ �

1

31=2
0, 0, 1, 0, 1, 0, 1, 0, 0ð Þ

T : ð10Þ

The associated trit operators are representable by F1 ¼ diag ða, c, b, b, a, c, c, b, aÞ
and F2 ¼ diag ðd, e, f , e, f , d, f , d, eÞ, respectively; with different a ¼ d, c ¼ e and
b ¼ f ; or, alternatively, with mutually different numbers a, b, c, d, e, f . With respect
to the original single particle states, the trit eigenstates (10) are entangled.

1.3. Inverse problems

Consider the related dual or inverse problem: suppose that a complete set of
orthonormal states S0 is given; what is the minimal set of comeasurable queries
necessary to separate any single one of these states from the other ones? To answer

trit 1 trit 2 trit 1&2

Figure 1. Two trits yield a unique tessellation of the two particle product state space.
The first and second single particle states are drawn horizontally and vertically,
respectively. Depicted are the first cases of equations (5)–(9).
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this question, the unitary transformation U connecting the set of orthogonal states
S0 with the standard orthonormal Cartesian basis S can be used to transform the
nit operators in equation (1) into their appropriate form.

For two-state systems labelled by ‘þ’ and ‘�,’ the method can for instance be
applied to a set of orthonormal base states of eight-dimensional Hilbert space
which contains the W-state introduced in [5] and discussed in [6].

j�1i ¼ j þ þþi,

j�2i ¼
1

31=2
j þ þ�i þ j þ �þi þ j � þþið Þ,

j�3i ¼
1

21=2
�j þ þ�i þ j � þþið Þ,

j�4i ¼
1

61=2
�j þ þ�i þ 2j þ �þi � j � þþið Þ,

j�5i ¼
1

31=2
j þ ��i þ j � þ�i þ j � �þið Þ,

j�6i ¼
1

21=2
�j þ ��i þ j � �þið Þ,

j�7i ¼
1

61=2
�j þ ��i þ 2j � þ�i � j � �þið Þ,

j�8i ¼ j � ��i: ð11Þ

Consider the unitary transformation UW given by

UW ¼

1 0 0 0 0 0 0 0

0
1

31=2
�

1

21=2
�

1

61=2
0 0 0 0

0
1

31=2
0

2

61=2
0 0 0 0

0
1

31=2
1

21=2
�

1

61=2
0 0 0 0

0 0 0 0
1

31=2
�

1

21=2
�

1

61=2
0

0 0 0 0
1

31=2
0

2

61=2
0

0 0 0 0
1

31=2
1

21=2
�

1

61=2
0

0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð12Þ

By construction, when applied to the vectors of the standard orthonormal
Cartesian basis, UW yields the states enumerated in equation (11). The corre-
sponding bit operators F1, F2, F3 and the context operator C are

F1 ¼ UW diag 2, 2, 2, 2, 3, 3, 3, 3ð ÞUWy
¼ diag 2, 2, 2, 2, 3, 3, 3, 3ð Þ,

F2 ¼ UW diag 5, 5, 7, 7, 5, 5, 7, 7ð ÞUWy
,

F3 ¼ UW diag 11, 13, 11, 13, 11, 13, 11, 13ð ÞUWy
,

C ¼ F1F2F3 ¼ UW diag 110, 130, 154, 182, 165, 195, 231, 273ð ÞUWy
: ð13Þ
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Note that, if instead of the prime numbers 2, 5, 11 and 3, 7, 13, we would have
used 1 and 0, respectively, projection operators would have resulted, but this
strategy can only be applied to the binary case [1].

2. Information of single quantum systems
Having defined nits for the many-particle case, let us now turn our attention to

one of the mysterious and puzzling issues of quantum mechanics: the postulated
randomness of certain measurement outcomes introduces an irreducible element
of acausality. Quantum randomness is accompanied by other principal limits of
operationalization and rational decidability, such as complementarity and contex-
tuality. Encouraged by the conference agenda and by many inspiring discussions
with Professor Greenberger, I shall raise a speculative and even controversial topic
and explore the randomness encountered in single and many-particle quantum
systems when there is a nit mismatch between the states prepared and the states
measured.

2.1. Amazing single particle quantum systems

Consider simple quantum mechanical preparation procedures, such as the
preparation of electrons in pure spin states along a particular direction realizable
by a Stern–Gerlach device. Let us assume that we have prepared or ‘programmed’
the electron spin to be in the ‘up’ state along our z axis. Then, by convincing
ourselves that, when measured along z, the electron spin is always ‘up,’ we decide
to ask the electron a ‘complementary’ question, such as, ‘what is the direction of spin
along the x axis perpendicular to the z axis?’ According to the quantum canon, in
particular quantum complementarity, the electron is totally incapable of ‘storing’
precisely more than one bit of information about its spin state in a single direction;
in particular it does not store a second bit of information about its spin state in any
perpendicular direction thereof. So, when interrogated about issues it was not at all
prepared to answer, it is at a complete loss of providing such information.

In this respect, the electron is like an input/output automaton accepting only
sequences of strings consisting of the symbol ‘a,’ being confronted with the symbol
‘b.’ Indeed, to ridiculously overextend the ‘Copenhagen interpretation’ to this
automaton case, it would not make much sense to push the word ‘ab’ onto the
automaton and watch its behaviour, since such a behaviour property does not exist.
The query seems to be an absurd one in the sense of non-existence of these
properties.

Hence, quantum analogies with deterministic agents seem to end when con-
sidering what happens in the case of absurd queries. Deterministic agents are
incapable of handling improper input, on which they offer no answer at all. The
electron, conversely, seems to provide an answer, albeit an irreducibly random
one. (In this case it behaves just like most Viennese when asked about a location
they do not know: they are too embarrassed to confess their ignorance, so they will
send the questioner off in arbitrary directions.)

Thus, from the computational point of view, electrons are amazing little gadgets:
they are incapable of adding two plus two, let alone universal computation; yet in
terms of algorithmic information theory [7, 8], any humble electron seems to possess
super-Turing computation powers. To be more precise: according to the ‘creed’
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canonized by some ‘quantum council’, the occurrence of certain individual quantum

events is believed to be totally unpredictable, unlawful, acausal, and thus indepen-

dent of past, present and future states of the system and of its surroundings, such as

the measurement interface, in any algorithmically meaningful wayy. As a con-

sequence, with high probability, algorithmically incompressible sequences can be

generated from quantum coin tosses [9, 10]. Summing up, in terms of spin, electrons

seem to specialize in two antithetical tasks, and in nothing else: being prepared to

issue a deterministic answer when asked a proper question; and tossing more or less

fair coins if asked improper questions.

2.2. Quantum randomness through context translation

We propose that the discrepancies of the seemingly inconsistent computational

powers of single quantum systems, such as the electron spin, can be overcome by

the assumption that it is not the electron which is the source of random data, but

the measurement apparatus and the environment of the measurement interface in

general which serves as a ‘context translation’ of an improper question to a proper

one, thereby introducing noise. The noise might originate from the many

uncontrollable degrees of freedom of the measurement interface, from the complex

physical behaviour of the measurement apparatus, and from the observer in

general. The particular type of symmetries involved here seem to restrict the

probabilities to Malus’ law [20].

Let us consider possibilities to test and refute this context translation by the

interface. One operationalization would be the ‘cooling’ of the interface to produce

a decrease of responsiveness of the measurement device. It is to be expected that

the ability to translate the measurement context decreases as the temperature is

lowered and the many degrees of freedom which make the measurement device

quasi-classical are frozen. This may also affect time resolution. In this scenario,

in the extreme case of zero temperature, the context translation might breakdown

entirely, and no discrimination between states could be given in the mismatch

configuration: the measurement device does not produce an answer to an improper

question.

For a concrete example, consider a calcite crystal and polarization measure-

ments of single photons prepared in a linear polarization state along a single axis. If

the context translation hypothesis was correct, the ability of an improperly

adjusted calcite crystal to analyse the polarization direction of photons would be

diminished as it, as well as the successive counters, gets cooler. Close to zero

temperature, for the mismatch configuration, there would not be any polarization

detection at all; the incoming photon would not get scattered and would remain on

its original path. As improbable as this scenario might appear, it is not totally

unreasonable or inconsistent and should be experimentally testable (e.g. see [12]

for a theory and [13, 14] for experimental determinations of birefringence in

high-temperature ranges).

yWe use the word ‘creed’ here because this claim cannot be operationalized, since it is
impossible to devise a test against all algorithmic laws. The ‘quantum council’ has been
orchestrated by Bohr and Heisenberg and adopted by the majority of physicists; with
irritating exceptions such as Schrödinger and Einstein.
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3. Final remarks
We have presented a formalization of nits for the many-particle case. The

present analysis is ‘top-down,’ in that it is based on the standard formalism
of Hilbert space quantum mechanics. From this point of view, Zeilinger’s
foundational principle, which is intended as a ‘bottom-up’ principle, is corrob-
orated by the fact that, quantum mechanically, with the nits properly defined via
state partitions, k elementary systems can carry k nits. By this we mean that k
mutually commuting measurements of (joint or single particle) observables with n
possible outcomes are necessary to determine the information encoded in a
quantum system completely.

We have also proposed a testable principle of context translation for the case of
a mismatch between state preparation and measurement. With regards to this, let
us mention some amusing quasi-classical analogues. Suppose, for instance, that
you have just trained your refrigerator to tell you whether or not it has enough
milk for breakfast. Then, if you asked the fridge whether there is enough butter in
it, maybe the best an intelligent program could do would be to guess the answer on
the basis of correlations of previous filling levels of milk and butter and give a
stochastic answer based on that sort of probability. Yet the fridge might be at a
complete loss if confronted with the question whether or not there is enough oil
in the car’s engine. If pressed hard, it might toss a more or less fair coin and tell
you some random answer, if capable of doing so.

Instead of a refrigerator, let us consider generalized urn models [15–17] of
the following form. Suppose an urn is filled with black balls with coloured symbols
on them, say blue and yellow. Suppose further you have a couple of colour glasses
of exactly the same colour. Now if you draw a ball and look at it with such a
coloured eyeglass, you will only be able to perceive the symbols in that particular
colour, and not the other one(s). Conversely, if you take another eyeglass, you will
see the symbols painted in that other colour. A lot of fancy games can be played
with generalized urn models; in particular complementarity games. (Formally, just
as quantum mechanics, their propositional structure is non-boolean; i.e. non-
distributive and thus non-classical [18], and turns out to be equivalent to autom-
aton partition logic [17].) All finite quantum subalgebras are realized by these
logics (see [18], section 3.5.3). Consider a simple question: suppose that we are
dealing with a two-colour model, say blue and yellow, yet we pretend to look at the
balls with a different colour, say green. What will happen? Well, there are two
cases, depending on the set-up. If our paints and filters are almost monospectral,
we shall see only black balls, because those balls were not prepared to give us
‘green’ answers. However, if the spectra of the paint and the filter are broadened as
usual, the original yellow and blue symbols will both appear green (albeit darker
and with less contrast than in the ‘true’ colours). If we expected a single unique
symbol, we may be puzzled to see two symbols, and we might wonder what the
‘message’, the ‘information’ encoded in the ball is. This occurs because of a
mismatch between the original ‘information’ prepared, and the ‘information’
requested by the observer.

The above models may be amusing anecdotes, but are there any relevant
connections with quantum physics? And if so, are the analogies superfluous? There
is an obvious difference: the above examples are quasi-classical; at any time the
observer may switch from intrinsic to extrinsic mode by leaving the incomplete
knowledge standpoint inside the Cartesian prison (see [19], section 1.9). For
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instance, an observer may just look up the oil level, or take off the coloured
eyeglasses. The difference between the intrinsic and the extrinsic standpoint is a
system science issue [20, 21]. In contrast, quantum mechanics does not offer such
an escape from any sort of ‘Cartesian prison’. It also seems to imply that there is
nothing to escape to, since, by the various variants of the Kochen–Specker theorem
(e.g. [18, 22, 23]) and bounds on classical probabilities by the Boole–Bell con-
ditions of possible classical experience (e.g. [24, 25]), there are certain properties
whose mutual existence is inconsistent. But maybe we are just too unimaginative to
envision the many possible options which we have (cf. the context translation
principle and [26, 27] for two conceivable alternatives)? Only the future will tell,
hopefully.
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