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Summary. --  We introduce a new type of orthomodular poser which is obtained by 
considering the pasting of partitions of a set. These partition logics appear in the 
experimental investigation of finite automata and can be related to certain quantum- 
mechanical systems. 
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PACS 03.65.Bz - Foundations, theory of measurement, miscellaneous theories. 

1.  - I n t r o d u c t i o n .  

The input-output analysis of t'mite automata yields a fresh insight into the 
quantum-mechanical feature of complementarity on a very elementary level. To sub- 
stantiate this claim it is necessary to interrelate the lattice theoretic [1] approach for a 
representation of quantum physics, pioneered by Birkhoff and yon Neumann [2] with 
the theory of fmite automata, in particular of Moore and Mealy automata [3-6]. 

Informally stated, the motivation behind this investigation is the construction of 
primitive experimental statements or propositions about automata[7]. Such 
experimental statements can be grouped into partitions of the set of internal 
automaton states; they form the basis of the formal investigation into the 
corresponding logics. In particular, there exist automata for which validation of one 
experimental statement makes impossible the validation of another experimental 
statement and vice versa. 

2. - Orthomodular posets. 

For a detailed introduction to orthomodular posets and lattices see[8] and[9]. 
A bounded poset P has a smallest element 0 and a largest element 1, such that 

0~<x<~l holds for a l l x � 9  

(*) The authors of this paper have agreed to not receive the proofs for correction. 
(**) e-marl: e1360dab@AWIUNIll.EDVZ.UniVie.AC.AT. 
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Let (P, ~<) be a bounded poset. An orthocomplementation on P is a unitary 
operation ' on P satisfying 

i) i f x ~ < y ,  t h e n y ' ~ < x ' ,  

ii) x " =  x, 

ill) the supremum x V x '  exists and x V x ' =  1. 

An orthoposet is a bounded poset with an orthocomplementation. 
The relation orthogonal J_ for elements x, y of an orthoposet P is defined by x • y 

(x is orthogonal to y) if x ~< y '  holds. 
An orthomodular poset P (OMP) is an orthoposet P satisfying 

i) if x • y then the supremum x V y exists in P, 

ii) x ~< y implies y = x V (x' A y). 

An orthomodular lattice (OML) is an 0MP which is also a lattice. 
A subalgebra is a subset M which is closed under the operations ' ,  V, A and 

which contains 0 and 1. The subalgebra F A  generated by an arbitrary subset A of P is 
the smallest subalgebra of P containing A if it exists. 

If x ~< y, then it is obvious that F { x ,  y} = {0, 1, x, x '  A y ,  y ' ,  y, x A  y ' ,  x '  } 
(see [9]). 

Let L be an OMP. A pair a, b �9 L is called compatible, denoted by a ,-~ b if there 
exist three mutually orthogonal elements al,  bl, c �9 L such that a = al V c and 
b = b l V c .  

L e m m a  1. i) i f  a, b �9 L and  a • b, then  a ,-* b; ii) i f  a, b �9 L and  a <<. b, then  a ~ b; 
iii) i f  a, b �9 L ,  a ~ b, a = al V c, b = bl V c f o r  three m u t u a l l y  orthogonal  e l emen t s  
al , bl , c �9 L ,  then  a V b and  a A b exist  and  a V b = al V bl V c and  a /~ b = c. 

For a proof see [8]. 
Let ~ be a non-empty set of OMPs such that all P, Q �9 ~ satisfy the following 

condition: 

P n Q is a sub-OMP of both P and Q, and the partial orderings and the 
orthocomplementations of P and Q coincide on P n Q. 

On L = U~ define the relation ~< and ' as follows: 

x ~< y iff x ~< p y for some P �9 ~, 

x '  = x 'P  iff  x �9 p .  

The algebra (L,-< ' -,, ) is called the pasting of the set ~. 
A block of an OMP P is a maximal Boolean subalgebra of P. Every element x of P 

is contained in at least one block since the Boolean subalgebra generated by x (and 
consisting of x, x ' ,  0, 1) can be embedded into a maximal one. 

Let !~ be a non-empty set of Boolean algebras such that for all B, C ~ ~ the 
following conditions hold: 

i) 0=0B = 0 C , 1 = 1 B = 1 c ,  

ii) for all x �9 B N C there holds: x '  = x'B = x'C, 

iii) B n C is a subalgebra of both B and C 



PARTITION LOGICS OF AUTOMATA 169 

(the indices indicate that  the operations belong to the respective Boolean algebras). 
Define on the set L = U ~ a unitary operation ' and a relation ~< by 

x ' = x  'B if x e B  for a B � 9  

x<~y i fx<~By for a B � 9  

The set L together with ' and ~< is called the pasting of the set ~.  
Consider a set M and a set ~ of partitions of M. Every partition P �9 ~ generates a 

Boolean algebra (Bp, _c, ' )  where Bp is the union set of P, c_ is the inclusion and ' is the 
set-complement. We will call the pasting of this Boolean algebras a partition logic and 
denote it by (M, 9t). 

Lemma 2. A partition logic is an OMP i f  the following two conditions hold: i) the 
induced relation <<. is transitive, ii) i f  a • b, then the supremum a V b exists. 

Proof. Let  (M, ~ )  be a partition logic which satisfies the conditions. Obviously, 
(M, ,9t) is an orthocomplemented poset. Let  a, b e (M, ~ )  and a • b. Then there 
exists a P �9 ~ such that  a, b �9 Bp. In Bp the supremum exists and a Vsp b = a U b. If  
c �9 (M, ~) ,  a ~< c and b ~< c, then a U b _c c holds. Since the supremum a V b exists in 
(M, .~) we conclude that  a V b = a U b ~< c. The orthomodular law holds, because for 
a ~< b and a, b e B p  we have a V ( a '  Ab)  = aVB~(a '  ABpb) = b. 

For  a more general proposition, see[10]. 
Every OMP can be viewed as the pasting of its blocks (see [8-10]). Another way to 

dissamble an OMP L in Boolean algebras is the following one: Define ~(L): = 
= {F{x, y} lx ,  y � 9  x <<. y}. Then L is the pasting of the set ~(L). 

A non-void subset I of an OMP L is called an ideal if it satisfies the following 
conditions: 

i) i f a e I  and b~<a, then b e I ,  

ii) if a, b e I  and a • b, then a V b � 9  

A prime ideal of an OMP L is an ideal P, P ~ L which satisfies the following 
condition: 

a •  implies a � 9  or b � 9  

The set of all prime ideals of an 0MP L will be denoted by P(L). 

Lemma 3. Let P, P ~ L be an ideal. The following conditions are equivalent: i) P 
is a prime ideal, ii) x �9 P iff  x '  ~t P for all x ~ P. 

Proof. i) implies ii). x • x '  holds, hence x e P or x '  �9 P. I f  x �9 P and x '  �9 P, then 
also 1 = x V x '  �9 P, which is a contradiction to P ~ L. 

ii) implies i). Let  x, y �9 P be orthogonal elements. One of the elements x, x '  is in 
P. I f  x �9 P, then condition i) is satisfied. On the other hand, if x '  �9 P,  then also y �9 P 
because y ~< x '  holds. 
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Lemma 4. Let P be a prime ideal, a o h  and a A b �9 P implies a e P  or 
b e P .  

Proof'. Let  a,--)b and a A b �9 P. Then there exist three mutually orthogonal 
elements a~, bl, c, such that  a = al V c, b = bl V c  and c = a A  b. a~ • bl implies 
a~ �9 P or b~ �9 P. I f  al �9 P, then also a = al V c e P. On the other hand, if bl e P,  then 
also b = b ~ V c � 9  

An OMP L is called prime if for all a, b �9 L, a ~ b, there exists a prime ideal P of L 
such that  a e P ,  b ~ P  or actP,  b o P .  

Let  L1, L2 be OMPs. A mapping f:  L1 --+ Le is called a morphism if the following 
conditions are satisfied: 

i) ~ o )  = o; 

ii) f (a '  ) = f ( a ) '  for all a �9 L1; 

iii) a, b �9 L1 and a • b implies f (a  V b) = f ( a )  Vf(b) .  

A morphism f is called an isomorphism if f is injective and f -1  is also a morphism. 
The following theorem can be seen as a generalization of Birkhoff's representation 

theorem for OMPs. In our case we have to require that  the OMP is prime. (For 
Boolean algebras Stone's theorem holds, which states that  every distributive lattice 
is prime.) 

Theorem 1. An  OMP L is isomorpic to a partition logic i f f  L is prime. 

Proof. i) Suppose first that  L is isomorpic to a partition logic (M, ~) .  We may 
assume that  L = (M, ~) .  Let  A, B � 9  and A ~ B. Then the set C:= ( A -  B ) U  
U (B - A) is not empty and we can choose a point p e C. Define a set P c_ L by P: = 
= {X e LIP  ~t X}. Then only one of the elements A, B is in P and we can easily check 
that  P is a prime ideal. 

ii) Let  L be a prime OMP. We denote by ~(P(L)) the power set of P(L). Define a 
mapping p: L -o ~(P(L)) by p(x): = {P �9 P(L)lx  ~ P}. 

We first prove some properties of p: 

p(0) = 0 is obvious. 

From Lemma 3 we know that  x �9 P iff x '  ~ P. Hence, p(x' ) = P(L) - p(x). 
Let  x , y � 9  and x •  We verify that  p ( x V y ) = p ( x ) U p ( y )  holds. Let  

P �9 p(x V y). This implies x V y ~t P. I f  x �9 P and y �9 P,  then also x V y �9 P which is 
contradiction. Hence, x �9 P or y ~t P and therefore P �9 p(x) V p(y). Let  now P �9 p(x), 
i.e. x ~ P. If  x V y �9 P, then also x �9 P which is again a contradiction. Hence, 
x V y ~ P  and P � 9  This proves p(x) c_p(xVy); in the same way 
p(y) c_ p(x V y). 

We define now the isomorphic partition logic: Let  x, y �9 L and x _1_ y. We set 
R({x, y}): = {p(x), p(y), p(x' A y ' )} .  Let  us verify that  R({x, y}) is a partition of 
P(L). From x ~< y '  we obtain p(x) c_ p(y' ) and further p(x) n p(y) = 0. p(x' A y '  ) = 
= p((x V y)') = P(L) - (p(x) U p(y)) proves that  R({x, y}) is indeed a partition. Set 

= {R({x, y}) lx  • y; x, y �9 L}. Then K = (P(L), ~ )  is a partition logic. Further,  K 
is the range of p. I f  x, y are different elements of L, then there exists a prime ideal P 
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such that  P includes one of the elements without including the other. Therefore, p is 
injective. Hence, p: L---~K together with the properties of p above is an iso- 
morphism. 

Let  L be a Greechie logic (an OMP which can be described by a Greechie diagram, 
see [8]). Let  A be the set of all atoms of L and let ~ be the set of all blocks of L. 

A set W c A  is called a weight if for all B �9 ~ we have W N  B = {a} for an atom 
a cA ,  i.e. the intersection of W and an arbi trary block consists of exactly one 
atom. 

The set of all weights on L will be denoted by W(X). 

Lemma 5. Let ~: P(L )--~ W(X) be the mapping defined by ~(P) = {a �9 X t a  ~t P}. 
Then ~ is bijective. 

For  a proof see [8]. 
We only remark that  the inverse mapping is given by ~ - 1 = { x �9 L I x ~< a '  for an 

atom a �9 W}. 
There exists a finite OMP, which is not prime, and hence, which is not isomorpic 

to a partition logic. The OMP is given by the following Greechie diagram: 

Fig. 1. 

I t  is easy to check that  the OMP has no prime ideals. 
A concrete logic is a set t~ and a collection J of subsets of ~] such that  the following 

conditions are satisfied: 

i) 0 c A ,  

ii) if A �9 A, then 12 - A �9 J, 

iii) if A, B �9 A and A N B = 0, then A U B e J. 

The relation ~< is given by the inclusion and the orthocomplement ' is given by the 
complement in 12. By this definition every concrete logic is an OMP. 

A two-valued state on an OMP L is a mapping s: L--~ {0, 1} such that  

i) s (1)  = 1; 

ii) if a • b and a, b �9 L, then s(a V b) = s(a) + s(b). 

The set of all two-valued states on L is denoted by ~ (L) .  

Lemma 6. Let L be an OMP. Then the mapping Z: ~ ( L ) - - , P ( L ) ,  Z ( s )=  
= {x E LIs(x)  = O} is bijective. 
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Proof. Let  L be an OMP, s a two-valued state on L. We show that  the set 
P = { x e L I s ( x )  = 0} is a prime ideal of L. s(0) = 0 and s(1) -- 1 implies P ~ 0 and 
P ~ L .  

Let  b �9 P and a ~< b. Then s(b)= 0 implies s (a )=  O. Hence, a �9 P. 
Le t  a • b and a, b �9 P. Then a V b e P because s(a V b) = s(a) + s(b) = O. 
Let  x • y. s(x V y) = s(x) + s(y) <~ 1 implies s(x) = 0 or s(y) = O. Hence, x �9 P or 

y e P .  
The inverse mapping is given by Z - I ( p ) ( x ) =  0 if x �9 P and X - I ( P ) ( x ) =  1 if 

x ~t P. 
An OMP L is called rich if if the following implication holds: 

({s �9 ~ ( L ) l s ( a )  = 1} c {s �9 ~(L)]s (b)  = 1}) implies a ~< b. 

Theorem 2 (Gudder[11]). A n  OMP L is isomorphic to a concrete logic i f f  L is 
rich. 

For  a proof s e e [ l l ]  or[8]. 

L e m m a  7. Every rich OMP is prime. 

Proof. Let  L be a rich OMP and let a, b, a ~ b be elements of L. Le t  us assume 
that  ({s �9 ~ ( L ) l s ( a )  = 1} = {s �9 ~(L)[s (b)  = 1}). The richness of L implies a ~< b and 
b < a, hence a = b, which is a contradiction to a ~ b. I t  follows there  is a state 
s e ~ ( L )  such that  s(a) = 1, s(b) = 0 or s(a) = O, s(b) = 1. L e m m a  6 implies tha t  this 
is equivalent to the existence of a prime ideal which includes one of the elements a, b, 
without including the other. This proves also that  every concrete logic is a part i ton 
logic. 

There  exists an OMP which is prime, but not rich. The OMP is given by the 
following Greechie diagram. 

4 

2," i % 1% 13 
12 

v w 9 

10 

Fig. 2. 
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We construct 

W1 = { 1 , 5 , 9 , 1 3 } ,  

W4 = {2, 5, 9, 12, 13}, 

W7 = { 2 , 4 , 7 , 1 1 } ,  

Wlo = {3, 7, 11, 13}, 

W13 = {3, 6, 8, 10, 12}. 

an isomorpic partition logic: The weights of L are: 

W2 = {1,  4, 6, 9 } ,  

Ws = {2, 5, 8, 11, 13}, 

Ws = {2, 4, 6, 8, 11}, 

Wll = {3, 6, 8, 11, 13}, 

w3 = { 1 , 5 , 8 ,  10}, 

w6 = {2, 4, 6, 9, 12}, 

W9 = {2, 5, 8, 10, 12}, 

W12 ~-- {3, 7, 10, 12}. 

For Greechie logics the composition q:= ~ op: L -~  ?~(W(X)) is also a morphism and 
the restriction q: L - ,  q(L) is again an isomorphism (lemma 5 and theorem 1). We can 
also restrict q to the set of atoms: q: X-*?~(W(X)). The function q is given by 
q(x) = {We W(X)Ix �9 W}. 

The following Greechie shows the picture of q for the atoms (the letter W is not 
written): 

{10, 11, 12, 13, 14} 

{4, 5, 6 , 7 ~  

{1, 2, 3 } ~  

{4, 6, 9, 12, 13, 14} 

{5, 7, 8, 1O, 1i} 
Fig. 3. 

{2, 6, 7, 8} {1, 3, 4, 5, 9} 
A 

S, l l ,  12, 14} 

{1, 4, 5, 10, 11, 12} / { 7 ,  10, 13} 

/ / / { 3 ,  5, 8, 9, 11, 14} 

{3, 9, 13, 14} {1, 2, 4, 6, 12} 

For a proof that the OMP from fig. 2 is not rich, see [8]. 

3. - A u t o m a t a  logic .  

In the sequel we want to investigate the logic of discrete, deterministic systems. 
For this purpose we use the automaton concept. 

An alphabet is a f'mite set, the elements of an alphabet are called symbols. A word 
(string) is a finite sequence of symbols juxtaposed. Let S be an alphabet. The set of all 
words over >2 

2* = {xl...x~ IxieS,  1 ~< i ~< n, 0 ~< n} 

together with the concatenation is the free monoid with neutral element ~ (for n = 0). 
Iwl denotes the length of a word w e 2 * :  Ix1 ...x~ I = n. 

A Mealy automaton is a 5-tuple M = (Q, x, A, 8, 2), where 

i) Q is the set of states, 
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ii) Z is the input alphabet, 

iii) A is the output alphabet, 

iv) ~: Q x X-*  Q is the transition function, 

v) ),: Q x Z - .  ~l is the output function. 

The functions ~ and ), 
~: Q x 2" - . / l * ' .  

Let q e Q ,  w e Z * ,  a e 2 .  

i) ~(q, ~) = q, 

ii) ~(q, wa) = ~(~(q, w), a), 

iii) ),(q, ~) = r 

can be generalized to functions ~: Q x z * - ~  Q and 

iv) }~(q, wa) = ~(q, w))~(~(q, w), a). 

In the sequel we write also ~ and )~ for ~ and ~. 
We need also the generalization of ;~ to a function ),: ~(Q)--)~(2:*) .  
Let P be a subset of Q. We set 

~ ( P , w ) =  U 2(q,w).  
qeP 

The relation ~ for states p, q e  Q and w e Z *  is defmed by 

P w q if )~(p, w) = ),(q, w).  

is an equivalence relation. For the partition generated by ~= we write Q~ ~ and 
the equivalence classes are denoted by [q]w. 

Two states p, q e Q are called distinguishable if there is a word w e Z* such that 
~(p, w) ~ ),(q, w). 

We shall investigate the following distinguishing problem: If an automaton M and 
its description is given (i.e. the 5-tuple M = (Q, Z ~, A, 8, i() ), but not the state of the 
automaton, which propositions can we make about the initial state? To learn 
something about the initial state, we have to enter a word and observe the output. If 
the input word is determined before we observe the first output, the experiment is 
called a simple one. Alternatively, the input word can depend on its previous output, 
permitting the experiment to branch. The later experiments are called branch 
experiments. 

Let us first consider only simple experiments. Every simple experiment is 
described by an input word w e 2;*. We assign to every state q c Q the proposition 
~(The automaton is in the state q), and write for this proposition again q. In the same 
way, we identify a subset P of Q with the disjunction of the propositions in P, in 
words ,,The automaton is in a state q e Q), (more exactly q stands for ,(The initial state 
of the automaton at the beginning of the experiment is q),). A proposition is called 
decidable if there is a simple experiment which determines the truth value. 

Generally, it is not possible to determine what state the automaton was in at the 
beginning of the experiment even when any pair of the automaton states is 
distinguishable (Moore's uncertainty principle [3], [4]). So the question we asked is 
not trivial. 

Every partition Q~ ~- generates a Boolean algebra, denoted by B(Q/~=). The 
mapping ~: Q~ ~ ~ ;~(Q, w) defined by ~([q]w) = i((q, w) is bijective. 
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We also generalize ~ to a function 9: B ( Q / w ) - . ~ ( Z * ) :  

~(A)= U ;~(q,w). 
[q]w c A 

Lemma 8. A proposition P c_ Q is decidable by a simple experiment w ~ 2,'* i f f  
P ~ B(Q/~= ). 

Proof. )~(w) denotes the observed output of the experiment. Of course, 
~(w) e )~(Q, w) holds. 

i) Let P e B ( Q / ~ ) .  It follows: P is true iff ~(w) e ~(P). 

Hence, P is decidable. 

ii) Let P e ~(Q), but P ~ B(Q/~=). Then there exists a W e ),(Q, w) such that 
c ~ -1 (W) n P r ~ -1 (W), where the inclusion is proper. There are points p, q �9 Q 

such that q ~ ~ -1 (W) n P and p e ~ -1 (W) - P. If the observed output is W, then P is 
not decidable, because the initial state of the automaton could be p as well as q. But 
the true value of the proposition P depends on this fact. 

The pasting of all partitions Q/~=, w e 2:* generates a partition logic, denoted b y  

L(M) = (Q,{Q/~= Iw ~ z *  }). 

Lemma 9. (Svozil [7]). To every partition logic L there exists an automaton M 
such that L = L(M). 

Proof. Let L = (Q, ~ )  be a partition logic. We will construct a minimal 
automaton M in the sense that M has at most three outputs. Therefore, we use the 
dissambling (~(L). 

We def'me M = (Q, ~(L),{0,  1, 2}, 8, ),). 
Let p be an arbitrary element of Q. 
Let q e Q, C �9 ~(L) and denote the atoms of C by Ao, A1, A,~. 
We defme 

Obviously, L = L(M). 

~ (q ,C) :=p  and ~ ( q , C ) = i ,  0~<i~<2 if q e A i .  

Notice, that non-isomorphic automata can possess the same partition logic. 
We now want to clarify in which way the logical connection of propositions is 

expressed in the partition logic. The interpretation of the orthocomplement is quite 
straightforward. The orthocomplement A'  of a proposition A is the logical negation of 
A, i.e. A '  has the meaning ,,non-A,. Notice, that every experiment which decides A 
also decides A'.  

The relation ~< can be interpreted by: A ~< B iff (,,if A is true, then B is true,and 
there is an experiment which decides both propositions A and B). 

That means <~ is not an idealistic relation, but a measurable one. 
Two propositions of a partition logic are simultaneously measurable, if both 

propositions can be decided by the same experiment. In quantum logic two 
propositions are simultaneously measurable if they generate a distributive 
subalgebra. This does not hold for partition logics. 
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Consider two automata with the partitions 

{{{1},{2},{3},{4}}} and 

{{{1},{2},{3, 4}},{{1},{3},{2, 4}},{{1},{4},{2, 3}}, 

{{2},{3},{1, 4}}, {{2},{4},{ 1, 3}}, {{3}, {4}, { 1, 2}}}. 

The pasting of both is the same, the Boolean algebra 2 4 , but by the first the two 
propositions { 1, 2} and { 1, 3} are simultaneously mesurable, but not by the second 
partition. For a further discussion of the relationship between partition logics and 
quantum logics, see Svozil[7]. 

At last we will consider branch experiments. Formally, we can describe branch 
experiments by a mapping E: A* ---~2 U {~} (see also[4]). 

The branch experiment E is carried out in the following way: 

i) E(D denotes the initial input symbol. 

ii) Let us assume the input w �9 Z* was applied and the output W �9 LI* was 
observed. Then we enter the input E ( W )  into the automaton. The experiment 
terminates if E ( W )  = ~. 

2~(q) denotes the observed output, if the automaton was in the initial state q. 
Similiar to simple experiments we define an equivalence relation 

E 
q = p iff ),E(q) = )~E( p) .  

Therefore we can use the same methods as for simple experiments. They yield a 
partition logic Lbranch (M) by the same way. Note that L~ple (M) _c Lbra~ch (M) which is 
the simple consequence of the fact that every simple experiment is also a branch 
experiment. 
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