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A critical review of randomness criteria shows that no-go theorems severely restrict the validity of actual "proofs" of undecid- 
ability. It is suggested to test microphysical undecidability by physical processes with low extrinsic complexity, such as polarized 
laser light. The publication and distribution of a sequence of pointer readings generated by such methods is proposed. Unlike any 
pseudorandom sequence generated by finite deterministic automata, the postulate of microscopic randomness implies that this 
sequence can be safely applied for all purposes requiring stochasticity and high complexity. 

1. In a strictly formal  sense, any " p r o o f "  of  ran- 
domness  is among the most  demand ing  tasks per- 
ceivable [ 1,2 ] - indeed it is equivalent  to f inding all 
true (not  merely all provable) mathemat ica l  theo- 
rems in an a t t empt  to "solve the unsolvable"  [3] .  
This idealist ic goal turns  out  to be impossible  
[4,2] ~ .  For  this and  deeper  [6]  reasons it is sug- 
gested to d rop  a ra ther  speculat ive terminology and 
substi tute the humble r  term undecidable for " ran-  
domness"  when it comes to physical  opera t ional i -  
zations. A sequence o f  physical events is said to be un- 
decidable i f  it is not possible to predict the forthcoming 
events by knowledge o f  previous ones. The term ran- 
domness will be reserved for the formal  not ion de- 
fined below. 

Undec idab i l i ty  is a relat ive concept.  The abi l i ty  to 
f ind a law predic t ing  events depends  on rather  sub- 
ject ive  criteria: Experience and intui t ion are very 
often the only guiding principles,  and f inding laws is 
nothing less but  a great and  rare art. I f  these a t tempts  
fail, then the events are undecidable  with respect to 
the corresponding trials and efforts. O f  course that  
does not  imply  that  there are no laws. - These heu- 
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~ A constructive (i.e., realizable) proof of randomness would 
require a computable decoding scheme for random sequences. 
This would result in an effective solution of intractable prob- 
lems, which is contradictory. For more details, see ref. [ 5 ]. 

ristic considera t ions  are suppor ted  by the provable  
fact that  there exists no systematic  ( " d e d u c t i v e " )  
me thod  to der ive laws even for arbi t rary  finite se- 
quences of  da ta  #2. The same is true for statist ical  
tests: statistical tests correspond to "laws" in the sense 
that  failure of  statist ical  tests (o f  r andomness )  im- 
plies that  significant predic t ions  are possible. A se- 
quence " looking"  perfectly random may pass var- 
ious statist ical  tests but  fail others. Thus it should 
always be clearly spelled out with respect to which 
test(s) undecidabi l i ty  has been proved.  

The following gedankenexperiment i l lustrates the 
relat ivi ty o f  the not ion o f  undecidabi l i ty  (and  of  
r andomness ) .  Cons ider  a physical  system x produc-  
ing numbers  on a display. Assume an observer  A, for 
whom X for all pract ical  purposes  is a "b lack  box";  
i.e., despi te  the display A has no knowledge of  X. As- 
sume a second observer  B, who by intui t ion or other 
insight knows that  y calculates the digits o f  7r, dis- 
plays them, and in doing so has ar r ived at a specific 
nth digit. In this case one may  ask the following 
questions.  ( i )  How does A without  communica t ing  
with B learn about  the "meanii~g" o f  Y, i.e., how 
could A find out  that  Y~ outputs  the digits o f  x? ( i i )  
To what  extend is the predict ive power  of  B re- 
s tr icted by finite computa t iona l  resources? - What  

~2 This is equivalent to the Turing problem, see for instance ref. 
[7]. 
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sense makes any "knowledge"  c la imed by B that  Y 
has ar r ived that  the n = 102°°th decimal  place of  n? 
for even if  one uses a whole galaxy as computer ,  and 
even if  one is willing to wait for the result of  the com- 
puta t ion  for a t ime comparable  to the age o f  the uni- 
verse, at least with present-day mathemat ica l  means,  
it is impossible  to conf i rm this s ta tement  and  to pre- 
dict the ( 102°°+ 1 )th decimal  place o f n  [8,9] ~3. At- 
though ideally n can be calculated determinis t ica l ly  
to an arbi t rary  precision,  one is forced to a proba-  
bil ist ic descr ipt ion by restr ict ions in computa t iona l  
resources and intui t ion - this was, after all, the per- 
cept ion of  Laplace 's  "o ld"  probabi l i ty  theory ~4. 

The above gedankenexper iment  is no exception.  
There are rather  few physical  systems whose evolu- 
t ion can be predic ted  [ 3 ]. Statist ical  tests somet imes  
are very weak hints on the stochastic nature o f  the 
underlying evolut ion.  Take for instance the s implest  
nontr ivial  sequence bui ld  from natural  numbers  1, 
2, 3, ..., enumera ted  in b inary  notat ion:  11011 .... It 
can be shown that  it is a Bernoulli  sequence [ 11], 
i.e. any arb i t ra ry  part ia l  sequence occurs with the ex- 
pected l imit ing frequency. The same has been dem- 
ons t ra ted  numerical ly  [ 10] for the decimal  expan- 
sion of  n up to 26 mil l ion places and for par t ia l  
sequences of  length 6. What  can be learned from these 
examples is that sequences looking rather chaotic may 
stem f rom extremely low-complex deterministic 
evolution. 

The reverse is true as well. Randomness  is prev- 
alent in classical de terminis t ic  physics, where it is 
in t roduced via the con t inuum postulate  [3] .  Clas- 
sical chaos is modeled  by "unfold ing"  the random-  
ness of  the real init ial  values by a de terminis t ic  evo- 
lution. In quan tum physics the s i tuat ion is different.  
Although the quan tum phase space is discrete and 
the Schr6dinger equat ion for the wave function ~Pis 

~3 To put it pointedly, although A may have no access to a CRAY 
2 supercomputer, he might be willing to believe Bailey's claim 
[ 10] that the next ten digits following the 29359000th digit 
in the decimal expansion of~ are 3, 4, 1, 9, 2, 8, 4, 1, 7, 8, but 
he will not accept a claim such as "'with a probability greater 
than 1 / 1 O, the 10 ath digit in a decimal expansion of n is 7"'. 

,4 For completeness another problem will be mentioned here 
which is treated elsewhere [6 ]: If the measurement process is 
intrinsic and self-referential, i.e., the measuring device cannot 
be arbitrarily separated from the system to be measured, to 
what extent could the resulting data be used to make 
predictions? 

deterministic,  the probabil ist ic interpretat ion of  I ~PI 2 
is most ly perceived as int roducing indeterminism.  
This is most strongly felt for the occurrence of  single 
microphysical  events, when the ensemble interpre-  
ta t ion may no longer be comfor tably  used. In what  
follows, emphasis  is layed on this feature o f  quantum 
theory (see also ref. [2] ). 

2. Before concentrat ing on an operat ional izat ion,  
some mathemat ica l  concepts of  randomness  are re- 
viewed. Besides the intui t ively evident  but  not very 
practical  approach by von Mises [ 13-15 ], there are 
two relevant  def ini t ions o f  randomness ,  which are 
equivalent  [2] .  A sequence x(n)=xo. . . xn_l  is de- 
f ined to be random if  ( i )  it passes all statist ical  tests 
of  randomness;  or  ( i i )  if  there exists no finite size 
descr ipt ion o f  a " law" which is able to reproduce the 
sequence with arbi t rary  length. 

the lat ter  requirement  of  "lawlessness" can be rep- 
resented in terms of  algorithmic complexity theory 
envisioned by Chaitin, Kolmogorov and others [ 1,2 ]. 
The algor i thmic complexi ty  H ( x ( n )  ) of  a sequence 
x ( n )  is the min imal  program length necessary to 
output  x ( n )  on a computer ,  i.e. i f  p symbolizes the 
program running on a computer  model  C, then 

H ( x ( n ) ) =  min leng th (p)  . 
C ( p )  = x ( n )  

A sequence is defined to be random if, as x ( n )  in- 
creases in length n, H ( x ( n ) )  increases as well such 
that  

lira [ n - H ( x ( n )  ) ]<oo .  
n ~ o o  

Heuris t ical ly speaking, this def ini t ion implies  that  a 
r andom sequence cannot  be substantial ly "com-  
pressed" by computa t iona l  efforts, and any program 
output t ing  x ( n )  boils down to mere enumerat ion,  at 
best  [3 ] ~5 

In a strictly formal  sense, randomness  is undecid-  
able [1,2].  This  is due to the fact that  it is not  sys- 
tematical ly  (i.e., deduct ively)  possible to f ind the 

,5 There is no space here to discuss different definitions of ran- 
domness, such as normalized randomness, i.e, 
K(x(n) ) ---lim,_~ H(x(n) )/n>0, which has important ap- 
plications in symbolic dynamics [ 16,6 ], or definitions of ran- 
domness based upon complexity measures [ 17,15,18 ]. 
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shortest  p rogram generating x ( n ) ,  or correspond-  
ingly, to per form all s tat ist ical  tests on x (n ) .  

In pract ice one is restr ic ted to a finite number  o f  
trial programs (or,  correspondingly,  o f  statist ical  
tests) ,  with no guarantee whatsoever  that  this is a 
proper  collection. Moreover ,  all sequences of  phys- 
ical po in te r  readings are bounded  in length (n < ~ ). 
The pedagogical  lesson to be learned f rom these k ind  
of  formalis t ic  considera t ions  again is that  all prac-  
tical "proofs"  o f  undec idabi l i ty  (and  even more  so 
o f  r andomness )  are severely hampered  by no-go 
theorems.  Thei r  p re l iminar i ty  and relat ivi ty strongly 
restrict  their  val id i ty  and applicabil i ty.  

Fig. 1. Experimental setup for generation of a sequence ~v(n). 
Light from a polarized laser source is split into two beams of equal 
intensity, each having a polarisation direction of _+ 45 o with re- 
spect to the original direction of polarisation. Incoming light 
quanta are then detected. Subsequent countings in detectors 0 
and l correspond to subsequent bits of ¢/(n ). 

3. We next turn  our  a t tent ion  to the generat ion o f  
suitable sequences o f  po in te r  readings 
~/(n ) = ~/o-..~/n- ~ from " q u a n t u m  coin tosses".  These 
can then be subject to statistical and complexi ty  tests, 
as suggested below (see also ref. [ 13 ] ). For  any test 
of  quan tum mechanical  undecidabi l i ty  it  is essential  
to use signals with no (extr ins ic)  noise f rom a con- 
trol lable source of  very low extr insic complexi ty  ~6 
To the author ' s  knowledge the op t imal  real izat ion o f  
such a source is a laser emit t ing coherent  and  po- 
lar ized light. All emi t ted  quanta  f rom such a source 
are in an identical  state. The  polar ized  laser light is 
then directed towards  a mater ia l  with anomalous  re- 
fraction,  such as a CaCO3 crystal,  which is capable 
of  separat ing light of  different  polar izat ions.  Its sep- 
ara t ion axis sould be arranged at + 45 ° with respect  
to the di rect ion o f  polar iza t ion  o f  the incident  laser 
beam. Then each o f  the two resulting beams,  de- 
noted by 0 and l,  respectively,  has a polar iza t ion  di- 
rection _ 45 ° f rom the original beam polar izat ion.  
A detector  is in each o f  the beam passes (see fig. l ). 
For  an ideal anomalous  refractor, the probabi l i ty  that  
a light quan tum from the polar ized  source will be in 
ei ther  one of  the two beams  is 1/2. 

A b inary  sequence ~/(n) can be generated by the 
t ime-ordered  observat ion  of  subsequent  quanta.  
Whenever  the quan tum is detected in beam 0 or  1, 
a corresponding digit  0 or  1 is wri t ten in the next po- 
sit ion of  ~ ( n ) ,  producing  g t (n+  1 ). In this way, n 

,6 The term "extrinsic" has been chosen to refer to external con- 
figurations only. Microphysical indeterminism is equivalent 
to the postulate of infinite "intrinsic" complexity. 

observat ions  generate a sequence ~7 ~/,/(n). 
It is suggested that  such a sequence is publ ished 

and sui tably d is t r ibuted  (e.g. by electronic ma i l )  by 
a bureau of standards [20 ]. This sequence could then 
be taken as a reference for statist ical  tests, some o f  
which are suggested below, and more generally, as a 
s tandard  for a generic r andom sequence. 

This should be unders tood  as follows. Compare  g/ 
to any pseudorandom sequence ~, generated by a fi- 
nite de terminis t ic  au tomaton .  Whereas  ~ could be 
appl icable  to a great variety o f  purposes  such as nu- 
merical  integrat ion or  op t imiza t ion  o f  database  re- 
trieval,  it will inevi tably fail specific statist ical  tests. 
Take for example  the statist ical  test corresponding to 
the generating algori thm of  tp i tself  - the law which 
is encoded by this a lgori thm is per definitionem ca- 
pable  o f  generating ( "p red ic t ing" )  all digits o f  (p. 
Thus, at least with respect to its own generat ion law, 

is provable  nonrandom.  
The postulate of  microphysical  indeterminism and 

randomness  on the other  hand  asserts that  there is 
no such "generating" law and hence no statistical test 
to "d i sp rove"  the randomness  proper ty  ~/. In fact, 
with this postula te  ~/is character ized by the fact that  
it passes all statistical tests with probabil i ty  one. Thus 

#7 One perception of this process is the amplification of noise 
from the vacuum fluctuations of the photon field (see for in- 
stance ref. [ 19 ] ). If, for any reason, this noise would exhibit 
regular nonrandom characteristics (rendering, for instance, 
amplitude oscillations I ~t) = sin (g2t) I O) + cos (f2t) I 1 ) with 
constant frequency f2), one could detect these regularities and 
find discrepancies with the postulate of microscopic 
randomness. 
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can serve as generic source for a random bit 
sequence. 

4. In what follows several statistical and algo- 
rithmic tests are suggested which could be applied to 
~(n). 

(i) Frequency counting. For ~t(n) to pass this test 
it has to be proven that any arbitrary sequence o f  m 
digits occurs in ~u(x) with a limiting frequency 2 - " .  
In order to obtain a reasonable confidence level (see 
ref. [4] for details), m has to be smaller than ap- 
proximately n - 7 .  An infinite sequence passing this 
test for arbitrary m is called Bernoulli sequence. As 
has already been mentioned, this criterion is rather 
weak. It is satisfied by the enumeration of  the nat- 
ural numbers [ 11 ] and within finite accuracy, by the 
decimal expansion of  ~ [ l 0 ]. Actually, in the above 
experimental setup, the statistics of  a 1-digit string 
(m = 1 ) should be used for calibration o f  a suitable 
angle, which is defined by the requirement that 0 and 
l should occur in ~ ( n )  with frequency 1/2. 

(ii) Algorithmic compressibility. ~( n ) could be the 
input of  various compression algorithms (e.g. the 
Huffman algorithm), which sould produce a (com- 
pressed ) string of  length Hc ( n ) with 
H(~/(n) ) ~<Hc(n) ~< n. On the average, Hc(n)  should 
increase as n increases, i.e., ( A H c ( n ) / A n )  = 1. Every 
compression algorithm is a kind of  "code breaking 
device" based upon a hypothesis on "laws" govern- 
ing sequences. Some of  them are used for commer-  
cial applications and are readily available. 

(iii) Spectral test. This is a critical test at least for 
linear congruential sequences. For a detailed discus- 
sion see ref. [14] .  The idea is to investigate the 
"granular" structure o f  ~ ( n )  in D-dimensional space 
in the following way. Split q/(n) into N---n/k sub- 
sequent partial sequences ~/(n, i) of  length k. Gen- 
erate N binary numbers 0~<xi< 1 by xi=~u(n, i ) /2  k 
For a D-dimensional analysis, arrange subsequent xi's 
into M = N / D  D-tuples Xj. The Xj's could be per- 
ceived as points in ~o. Consider further all families 
of  ( D - 1 ) - d i m e n s i o n a l  parallel hyperplanes with 
points X s. If  l / v ( D )  denotes the maximal distance 
of  these hyperplanes, v(D) is called the D-dimen- 
sional "accuracy" o f  ~,(n). v (D)  should on the av- 
erage be independent of  the dimension, i.e., 
( A v ( D ) / A D )  =0.  For statistical reasons, one can- 

not achieve a D-dimensional accuracy of  more than 
about 2 k/° and 1 /M D. Thus the spectral test is re- 
liable only for v ( D ) < 2  kID and sequence length 
n > k D [ v ( D )  ]D. 

(iv) High-dimensional integration. Assume an an- 
alytically computable D-dimensional integral 

1 1 

F ( D ) =  f ... f d X I . . . d X D f ( X I  . . . .  , X D )  . 

0 0 

Consider again a representation of  ~,(n) into M =  n~ 
kD points X s in the D-dimensional unit interval. De- 
fine F' ( D ) = ( 1 / M )  Zs f  ( XJ). Then for arbitrary test 
functions l a n d  with probability 1, the discrepancy 
I F ( D )  - F '  (D) IvcM -l/2 only depends on the num- 
ber of  points and not on the dimension ,s 

The proposed tests are not independent. Certain 
compression algorithms use tables of  repeating se- 
quences and are thus connected to frequency count- 
ing methods. The spectral test analyzes the distri- 
bution of  points generated from sequences in a unit 
interval of  high-dimensional space. It is thus a cri- 
terion for the quality o f  approximation in numerical 
integration. 

There are other fairly strong statistical tests such 
as the law of  the iterated logarithm [ 21,13 ], but many 
of  them turn out to be unpractical for their low con- 
fidence levels in applications. 

5. In summary,  it is proposed to investigate the 
postulate of  undecidability of  microphysical events 
by statistical and algorithmic tests. None of  these ac- 
tions can actually prove randomness, since due to 
no-go theorems which are ultimately based on G6- 
del's incompleteness theorems, such a proof  is im- 
possible. All one can attempt to do is to at least en- 
sure the applicability of  undecidable physical 
measurement series for particular tasks, such as 
theorem proving ~9, Monte Carlo integration and da- 
tabase retrieval. It is further suggested to create and 
distribute such a sequence for testing and as a ge- 
neric standard. 

~s For the Simpson method of numerical integration, in order to 
obtain accuracies of the order of M -1/2, one needs at least 
M n/s points to obtain the same order of discrepancy. There 
the number of points depends on the dimension. 
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T h i s  w o r k  was  s u p p o r t e d  in  p a r t  b y  t h e  E r w i n  

S c h r 6 d i n g e r - G e s e l l s c h a f t  ft ir  M i k r o w i s s e n s c h a f t e n .  

#9 The Babylonians allegedly "proved" an algebraic theorem 
(such as n + m = m + n), verifying it inductively by inserting 
"large" numbers. If the complexity of the numbers is much 
larger than the complexity of the theorem to be proven (i.e. 
intuitively speaking: there is nothing "special" about this 
number), then this inductive form of proof is legitimate. A 
deductive proof would require an equal amount of complex- 
ity. One arrives at this result by the following intuitive argu- 
ment: one could attempt to prove an algebraic theorem t (v) 
(v stands for the free variables) deductively by deriving it from 
axioms and rules of inference. The global derivation oft, con- 
taining all intermediate derivation steps, can be represented 
by a whole GSdel number ~ ( t ) .  # ( t )  is a sequence of char- 
acters which can be given a complexity measure C(#( t )  ). One 
could define a proof to be "effective" if # (t) is finite random, 
that is if C (#  (t) ) ~ # (t). Assume suitable representations of 
(finite) random numbers r > # (t). Intuitively, substitution of 
r for the free variables v in t (v) yields an effective proof, since 
the computational complexity "investment" for the verifica- 
tion of t (r) is greater than the complexity of an effective de- 
ductive proof of t. In this strange sense, both inductive and 
deductive methods of proof are equivalent. Of course, the in- 
ductive method requires sequences with a "guaranteed" 
amount of complexity. 
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